ISSN (0970-2083)

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Research Article Open Access

PRODUCTION OF ACTIVATED CARBON FROM SOLID WASTE RICE PEEL (HUSK) USING CHEMICAL ACTIVATION

Abstract

Activated Carbon is an essential substance for many industrial activities. For instance, bleaching agent (in sugar factory) and for water filtration. Most of the Activated Carbon for industrial activities is being imported from other countries. However, there is no sufficient amount of production to satisfy the need in our country and the demand for Activated Carbon in the market is high. So, to satisfy the demand the Activated Carbon is being produced using solid waste Rice Husk. The purpose of this project is the preparation of Activated Carbon using a suitable rice husk. The Activated Carbon produced from Pyrolysis of rice husk was chemically activated with activating agent sodium hydroxide (NaOH). The chemically activated carbons were characterized by measuring yield percentage and bulk densities. The activated carbon produced from rice husk at different activating temperature of 650ºC, 700ºC and 800ºC exhibit a yield percentage of 48.2%, 47.65% and 45.95% respectively and corresponding bulk densities were 0.2 g/ml, 0.16 g/ml and 0.117 g/ml respectively. Proximate analysis also performed for precursor selection to choose the appropriate precursor. The quality of activated carbon is highly proportional to the dehydration rate of the sample and also on the process of removal of the volatile substances present in the precursor. According to proximate analysis, rice husk has a volatile matter of 68.06%, ash content 0.952%, fixed carbon content 20.988% and moisture content of 10%. This contributes to a total volatile content (easily escapable components) of about 68.06%. The proximate analysis of rice husk also reveals that the selected rice husk has good carbon content which is 20.988%. Therefore, proximate analysis served as an evidence for choosing rice husk as the precursor. Finally, a preliminary material and energy balance on pyrolysis or carbonization was performed.

D. SHARATH , JEDIDIAH EZANA AND ZEYNU SHAMIL

To read the full article Download Full Article | Visit Full Article

Copyright © 2024 Research and Reviews, All Rights Reserved