Jr. of Industrial Pollution Control 33(2)(2017) pp 1633-1638 www.icontrolpollution.com Mini Review

A MINI REVIEW ON APPLICATION OF TIO_2 NANOPARTICLE IN WOOL TECHNOLOGY

MADHURIMA GUPTA, ASHMITA DAS AND SANGEETHA SUBRAMANIAN*

Department of Biotechnology, School of Biosciences and Technology, VIT University, India

(Received 03 October, 2017; accepted 22 December, 2017)

Key words: Photo-catalysis, wool, Titanium oxide, Textile industry

ABSTRACT

In recent years attention has been towards the development of smart textiles with superior characteristics and enhanced durability. To cater the needs of high sustainable textiles, application of nanotechnology has been introduced in textile industry with promising achievement. Titanium oxide nanoparticle is one such material which could be applicable in textile industry, whose photo-catalytic activities have been widely investigated owning to its high stability and low toxicity. This paper enlists various applicative properties of titanium oxide nanoparticles and its implementation in the textile industry, especially to woollen fibres for advanced applications.

INTRODUCTION

The textile industry is no longer a mere supplier of fabrics, rather it is now evolving as a positive force that can help in the development of the society. Technology has made it possible to manufacture fabrics that have a potential to revolutionize our lives. Today the textile industry seeks innovations which can improve daily life, benefit the industry and health sector and adhere to eco-friendly norms. One such step towards development is development of fabrics that can clean themselves as well as purify water by using nothing but the sun as an energy source. This is possible by application of TiO₂ nanoparticle coating onto the fabric.

Titanium oxide (TiO_2) is a naturally occurring oxide of titanium, also known as Titania. The powdered ore of Titania is white in colour and is widely used as a pigment in paint and food industry after suitable purifications and modifications. The photo catalytic properties of TiO_2 was first discovered by Akira Fujishima in 1967 (Fujishima and Zhang, 2006). In recent years a lot of interest has been shown in the photo-catalytic potential of Titania due to its variant properties. Titania's photo-catalytic potential increases ten folds when used in nanoparticle form due to enhanced surface properties and the

several utilities linked to this property in TiO₂ has been illustrated below (Fig. 1). Photo-catalysis is a phenomenon where light acts as a catalyst to drive the reaction forward. In case of TiO₂ nanoparticle the photo catalytic activity is observed under UV spectrum (100nm-400nm) and the UV irradiation causes movement of positive holes and negative electrons, which have oxidising and reducing effects, respectively (Fujishima and Zhang, 2006; Nakajima, et al., 2000). On one hand, holes oxidise water to hydroxyl (OH) ions, which are capable of manipulating configuration of dyes and other organic pollutants; while on the other hand electrons reduce oxygen molecules to superoxide radicles, which decompose harmful microbes, dirt, stains, etc (Ramasundaram, et al., 2016; Pelaeza, et al., 2012).

Thus, the application of TiO_2 nanoparticle onto a fabric, imparts properties such as self-cleaning, antiaging, UV protection, antimicrobial, etc (Pekakis, *et al.*, 2006; Johnson, *et al.*, 2008; Munafò, *et al.*, 2014). In this article, we shall be focussing on the applications related to wool fibres. Wool, a widely used fibre in the textile industry, is acclaimed as a natural composite fibre with astounding manipulative chemical and physical properties, such as warmth, resiliency, fire-resistance etc. These properties are controlled

by both chemical composition as well as structural configuration of the fabric (Li, *et al.*, 2014; Quagliarini, *et al.*, 2012; Behzadnia, *et al.*, 2014) (Fig. 2).

However the wool fabric still has a number of limitations; low photo-stability, photo-yellowing, decomposition due to certain insects, microbial susceptibility, etc. (Mura, *et al.*, 2015; Montazer and Pakdel, 2010; Periolatto, *et al.*, 2013). These problems can be solved to a great extent by TiO₂ immobilization

(Yang, 2013; Kubacka, *et al.*, 2014; Gelover, *et al.*, 2006; Gómez-Ortíz, *et al.*, 2013; Lian, *et al.*, 2016).

RESULTS AND DISCUSSION

Application of TiO, nanoparticles

Titania is a special compound which finds a wide range of applications in various industrial sectors and Table 1 illustrates TiO_2 utilities discovered so far. The properties such as longer shelf-life, self-

Fig. 1 Utility of the photo catalytic effect of TiO₂.

Fig. 2 Represents the various applications of immobilized TiO, on wool fiber.

S. no.	Properties	Sector	Example	Ref	
1	Self-Cleaning	Environment	Poly(vinyl dine fluoride) is used as a cross linker to immobilize TiO_2 by melting at 160°C on the steel Mesh.SM helps to remove organic dyes from the flow of wastewater.	[2], [3], [4], [5]	
			TiO_2/H_2O_2 nanocomposite are used for the removal of the heavy metal from waste water.	[6]	
			The bulk insertion of TiO_2 in various materials (cements, ceramics etc.) related to building industry helps in degradation of organic and inorganic pollutant in gas phase.	[5], [7], [8], [9]	
		Construction	Self-cleaning and anti-fogging glass is prepared due to the micro constructed composition of TiO_2 at hydrophilic and oleophilic phases. Sometimes PEG and its composites are used a cross linker agent. Used in bulbs commonly.	[10], [11], [12], [17]	
			TiO_{2} coating on the surface of lime stones protect heritage for several year.	[6], [14], [15],	
			TiO_2 addition in water based acrylic paint enhance its long lasting power and mechanical properties to cure the cracks etc.	[16], [17]	
		Marine Hydrology	TiO ₂ coated Ti mesh works as oil separating device due to their superoleophobicity	[18]	
		Food	Simultaneous Implication of UV radiation and TiO ₂ on sludge at high temperature helps in controlled removal of PAHs through the process of degradation.		
		Textile	Incorporation of TiO ₂ along with casein and other sensitizing agent in the different fabrics (e.g. cotton) protects the garments from organic stains.	[20], [21], [22]	
2	Anti UV property and anti-aging	Textile	Attachment of TiO_2 nanoparticles with clothes to improve the anti-UV absorption and improve the life of material.	[23], [24]	
3	Antimicrobial properties	Health	In rural areas, coliforms are removed from the water by using TiO ₂ coating on any substance, also could be used for anti-microbial agent towards pathogenic microbes.	[25], [26], [47]	
		Construction	Ca (OH) $_2$ and TiO $_2$ mixture was coated on the limestone, prevents the growth of fungus.	[27]	
		Food	In the presence of high pressure, TiO2 nanoparticle can be easily transported from polyvinyl-Chitosan biofilm or other packing material) to food stimuli (e.g olive oil) which helps to protect from biodegradation.	[28]	
		Health	Coating of tio ₂ on the biomedical device basically prevents the transmission of various infectious diseases during the diagnosis period. Titanium based material could be used for space closure in bialveolar dental protrusion.	[29], [30]	
4	Odour Removal	Health	Degrade the H_2S and other unpleasant odour bearing gas in $NO_{2'}SO_2$ and CO_2	[31]	

Table 1. Various applications of TiO₂ nanoparticles

cleaning, UV protection and antimicrobial properties are much sought after to improve quality of life as well as create products that are sustainable and environment friendly (Visai, *et al.*, 2011; Chaitanya, *et al.*, 2017; Ao and Lee, 2005).

The main reasons for the wide acceptance of TiO_2 nanoparticles as a coating material its safety and non-toxicity to the fabric as well as to the skin, durability, ease of application, stability, no degradation on repetitive wash cycles, and the scope

for manipulations in its photo catalytic properties by modifying reaction conditions. (Tung and Daoud, 2009; Pakdel, *et al.*, 2013; Zhang, *et al.*, 2014; Li, *et al.*, 2010; Behzadnia, *et al.*, 2015; Euvananont, *et al.*, 2008) Moreover, it has been reported that it is possible to shift active region from UV range to visible light (Behzadnia, *et al.*, 2015). It is also applicable to a wide range of surfaces. In textile industry, it is used extensively due to its high compatibility with fabrics and low cost of production (Wang, *et al.*, 1997;

SUBRAMANIAN ET AL.

Immobilization Techniques	Immobilizing agent	Conditions	Advantages	Disadvantages	Reference
Sol gel method	Succinyl anhydride	Room temperature	One step, easy and homogeneity at atomic level ,High adhesion of TiO ₂	Shrinkage, low durability, Deterioration of carrier gas	[32],[33],[34]
Hydrothermal method	Hydrothermal method Tetrabutyl titanate and ammonium chloride			More energy Requirement	[35],[20],[36]
Sono-synthesis		One step process in very optimum pressure and low temp(70°C-80°C)	Rapid, simple and inexpensive, Absence of toxic substances	No bond formation causes low adhesive nature	[37],[38],[39]
Self -assembly	poly (sodium 4-styrene-sulfonate) (PSS)	Electrostatic deposition	Less energy consumption, Easy and uniform distribution	Absence of covalent bond	[23]
Direct method		Lowering the pH at room temp		No bond formation	[40],
Grafting	Citric Acid		Most uniform deposition No degradation of carrier gas	May produce toxic waste	[41],[42]
Sputtering		Deposition of source material at a temperature lower than evaporation	Fast process	No bond formation only van dar waal and mechanical interaction Less adhesive	[43]
Plasma treatment Inert gas worked as a carrier gas		Occur at the room temp	Fast and one step process Strong adhesion	More energy consumption	[44],[45],[46]

Table 2. Represents various techni	ques available for TiO, immobilization
------------------------------------	--

Spasiano, et al., 2015; Kim, et al., 2016; Guan, 2005; Licciulli, et al., 2011).

TiO₂ modifications and immobilisation onto woollen fabric

As mentioned earlier, wool is a photo-sensitive fibre and UV light, in particular, has a negative effect on the stability of the fibre. Immobilizing TiO_2 (coating the nanoparticle) on to the surface of the fabric helps solve these problems as well as improves the mechanical strength of the fabric (Ghoranneviss, *et al.*, 2011; Kan and Yuen, 2007; Kan and Yuen, 2006; Chi-wai, *et al.*, 2003; Chatterjee, *et al.*, 2016). Table 2 illustrates various modifications and conditions used for immobilizing TiO₂ onto woollen fabric (Ferrari, *et al.*, 2015; Carneiro, *et al.*, 2012; Salthammer and Fuhrmann, 2007; Banerjee, *et al.*, 2014; Karaca and Tasdemir, 2014).

Post application of TiO_2 nanoparticle coating properties such as improved strength, crease resistance, self-cleaning, UV protection, resistance against microbial decay, etc. have been achieved. Thus the newly improved fibre finds a greater deal of applications in diverse fields (Zhang, *et al.*, 2014; Xu, *et al.*, 2016; Kale, *et al.*, 2016; Liu, *et al.*, 2012).

CONCLUSION

Among the wide range of options available in nanoparticle applications, Titanium dioxide and its composites have gained most attention mainly due to their high chemical stability, ease of availability, low cost and non-toxicity. It significantly enhances the characteristics of wool fabric but does not alter any intrinsic property, mainly draping ability and resilience. Wool is a multifunctional fibre which comes in a range of diameters and fabrication techniques that makes it a widely sought after fibre for clothing manufacture, household fabrics as well as technical textiles. The application of TiO, nanocoating not only elevates the existing properties of the fibres but also imparts certain beneficial properties such as self-cleaning and odour. Overall outcome of such a modification would be the development of smart textiles with superior performance and enhanced comfort.

REFERENCES

Ao, C.H. and Lee, S.C. (2005). Indoor air purification by photocatalyst TiO₂ immobilized on an activated carbon filter installed in an air cleaner. *Chem. Eng. Sci.* 60 : 103-109.

- Banerjee, S., Pillai, S.C., Falaras, P., O'Shea, K.E., Byrne, J.A. and Dionysiou, D.D. (2014). New insights into the mechanism of visible light photocatalysis. *J. Phys. Chem. Lett.* 5 : 2543-2554.
- Behzadnia A. Montazer M. Rashidi A. Rad MM. Rapid sonosynthesis of N-doped Nano TiO₂ on wool fabric at low temperature: Introducing selfcleaning, hydrophilicity, antibacterial/antifungal properties with low alkali solubility, yellowness and cytotoxicity. Photochem. Photobiol 2014, vol. 90, no. 6, pp. 1224–1233.
- Behzadnia, A., Montazer, M. and Rad, M.M. (2015). Simultaneous sonosynthesis and sonofabrication of N-doped ZnO/TiO<inf>2</inf> core-shell nanocomposite on wool fabric: Introducing various properties specially nano photo bleaching. *Ultrason. Sonochem.* 27 : 10-21.
- Behzadnia, A., Montazer, M., Rashidi, A. and Rad, M.M. (2014). Sonosynthesis of nano TiO_2 on wool using titanium isopropoxide or butoxide in acidic media producing multifunctional fabric. *Ultrason. Sonochem.* 21 : 1815-1826.
- Carneiro, C., Vieira, R., Mendes, A.M. and Magalhães, A.F. (2012). Nanocomposite acrylic paint with selfcleaning action. J. Coatings Technol. Res. 9: 687-693.
- Chaitanya, N., Arshad, A.M., Praveen, K.R.K., Prashant, C., Bailwad, S. and Navin, P. (2017). Space closure in bialveolar dental protrusion cases - A comparative combination method. *Asian J Pharm Clin Res.* 10 : 106-109.
- Chatterjee, A., Nishanthini, D., Sandhiya, N. and Abraham J. (2016). Biosynthesis of titanium dioxide nanoparticles using vigna radiata. *Asian J Pharm Clin Res.* 9 : 1295-1300.
- Chi-wai, K., Kwong, C., Chun-wah, M.Y., Hom, H. and Kong, H. (2003). Surface characterization of low-temperature plasma treated wool fibre. *Autex Res. J.* 3 : 194-205.
- Euvananont, C., Junin, C., Inpor, K., Limthongkul, P. and Thanachayanont, C. (2008). TiO₂ optical coating layers for self-cleaning applications. *Ceram. Int.* 34 : 1067-1071.
- Ferrari, A., Pini, M., Neri, P. and Bondioli, F. (2015). Nano-TiO₂ coatings for limestone: Which sustainability for cultural heritage?. *Coatings*. 5 : 232-245.
- Fujishima, A. and Zhang, X. (2006). Titanium dioxide photocatalysis: Present situation and future approaches. *Comptes Rendus Chimie*. 9:750-760.
- Gelover, S., Gómez, L.A., Reyes, K. and Teresa, L.M. (2006). A practical demonstration of water

disinfection using TiO_2 films and sunlight. *Water Res.* 40 : 3274-3280.

- Ghoranneviss, M., Shahidi, S., Anvari, A., Motaghi, Z., Wiener, J. and Šlamborová, I. (2011). Influence of plasma sputtering treatment on natural dyeing and antibacterial activity of wool fabrics. *Prog. Org. Coatings*. 70 : 388-393.
- Gómez-Ortíz, N., Rosa-García, D.S., González-Gómez, W., Soria-Castro, M., Quintana, P. and Oskam G. (2013). Antifungal coatings based on $Ca(OH)_2$ mixed with ZnO/TiO₂ nanomaterials for protection of limestone monuments. *ACS Appl. Mater. Interfaces.* 5 : 1556-565.
- Guan, K. (2005). Relationship between photocatalytic activity, hydrophilicity and selfcleaning effect of TiO₂/SiO₂ films. *Surf. Coatings Technol.* 191 : 155-160.
- Johnson, T.A., Jain, N., Joshi, H.C. and Prasad, S. (2008). Agricultural and agro-processing wastes as low-cost adsorbents for metal removal from wastewater: A review. *Journal of Scientific and Industrial Research*. 67 : 647-658.
- Kale, B.M., Wiener, J., Militky, J., Rwawiire, S., Mishra, R. and Jacob, K.I. (2016). Coating of cellulose-TiO₂ nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness. *Carbohydr. Polym.* 150 : 107-113.
- Kan, C. and Yuen, C.M. (2007). Plasma technology in wool. *Text. Prog.* 39 : 121-187.
- Kan, C.W. and Yuen, C.W.M. (2006). Surface characterization of low temperature plasmatreated wool fibre. *J. Mater. Process. Technol.* 178 : 52-60.
- Karaca, G. and Tasdemir Y. (2014). Migration of PAHs in food industry sludge to the air during removal by UV and TiO₂. Sci. *Total Environ*. 356-361.
- Kim, S.M., In, I. and Park, S.Y. (2016). Study of photo-induced hydrophilicity and self-cleaning property of glass surfaces immobilized with TiO₂ nanoparticles using catechol chemistry. *Surf. Coatings Technol.* 294 : 75-82.
- Kubacka, A., Diez, M.S., Rojo, D., Bargiela, R., Ciordia, S. and Zapico, I. (2014). Understanding the antimicrobial mechanism of TiO_2 -based nanocomposite films in a pathogenic bacterium. *Sci Rep.* 4 : 4134.
- Li, J., Yu, H., Sun, Q., Liu, Y., Cui, Y. and Lu, Y. (2010). Growth of TiO₂ coating on wood surface using controlled hydrothermal method at low temperatures. *Appl. Surf. Sci.* 256 : 5046-5050.
- Li, Q., Zong, L., Li, C. and Yang, J. (2014). Reprint

1637

of photocatalytic reduction of CO₂ on MgO/TiO₂ nanotube films. *Appl. Surf. Sci.* 319 : 16-20.

- Lian, Z., Zhang, Y. and Zhao, Y. (2016). Nano-TiO₂ particles and high hydrostatic pressure treatment for improving functionality of polyvinyl alcohol and chitosan composite films and nano-TiO₂ migration from film matrix in food simulants. *Innov. Food Sci. Emerg. Technol.* 33 : 145-153.
- Licciulli, A., Calia, A., Lettieri, M., Diso, D., Masieri, M. and Franza, S. (2011). Photocatalytic TiO₂ coatings on limestone. *J. Sol-Gel Sci. Technol.* 60 : 437-444.
- Liu, J., Wang, Q. and Fan, X.R. (2012). Layer-by-layer self-assembly of TiO₂ sol on wool to improve its anti-ultraviolet and anti-ageing properties. *J. Sol-Gel Sci. Technol.* 62 : 338-343.
- Montazer, M. and Pakdel, E. (2010). Reducing photo yellowing of wool using nano TiO₂. *Photochemistry and Photobiology*. 86 : 255-260.
- Munafò, P., Quagliarini, E., Goffredo, G.B., Bondioli, F. and Licciulli, A. (2014). Durability of nanoengineered TiO₂ self-cleaning treatments on limestone. *Constr. Build. Mater.* 65 : 218-231.
- Mura, S., Greppi, G., Malfatti, L., Lasio, B., Sanna, V. and Mura, M.E. (2015). Multifunctionalization of wool fabrics through nanoparticles: A chemical route towards smart textiles. *J. Colloid Interface Sci.* 456 : 85-92.
- Nakajima, A., Koizumi, S.I., Watanabe, T. and Hashimoto, T. (2000). Photoinduced amphiphilic surface on polycrystalline anatase TiO_2 thin films. *Langmuir*. 16 : 7048-7050.
- Pakdel, E., Daoud, W.A. and Wang, X. (2013). Selfcleaning and superhydrophilic wool by TiO 2 / SiO 2 nanocomposite. *Applied surface science*. 275 : 397-402.
- Pekakis, P.A., Xekoukoulotakis, N.P. and Mantzavinos, D. (2006). Treatment of textile dyehouse wastewater by TiO₂ photocatalysis. *Water Res.* 40 : 1276-1286.
- Pelaeza, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P. and Kontos, A.G. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. *Applied Catalysis B: Environmental*. 125 : 331-349.
- Periolatto, M., Ferrero, F., Vineis, C. and Rombaldoni, F. (2013). Multifunctional finishing of wool fabrics by chitosan UV-grafting: An approach. *Carbohydr. Polym.* 98 : 624-629.

- Quagliarini, E., Bondioli, F., Goffredo, G.B., Cordoni, C. and Munafò, P. (2012). Self-cleaning and depolluting stone surfaces: TiO₂ nanoparticles for limestone. *Constr. Build. Mater.* 37 : 51-57.
- Ramasundaram, S., Seid, M.G., Cho, J.W., Kim, E., Chung, Y.C. and Cho, K. (2016). Highly reusable TiO₂ nanoparticle photocatalyst by direct immobilization on steel mesh via PVDF coating, electrospraying, and thermal fixation. *Chem. Eng. J.* 306 : 344-351.
- Salthammer, T. and Fuhrmann, F. (2007). Photocatalytic surface reactions on indoor wall paint. *Environ. Sci. Technol.* 41 : 6573-6578.
- Spasiano, D., Marotta, R., Malato, S., Fernandez-Ibañez, P. and Somma, D.I. (2015). Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. *Applied Catalysis B: Environmental*. 90-123.
- Tung, W.S. and Daoud, W.A. (2009). Photocatalytic self-cleaning keratins: A feasibility study. *Acta Biomater*. 5 : 50-56.
- Visai, L., Nardo, D.L., Punta, C., Melone, L., Cigada, A. and Imbriani, M. (2011). Titanium oxide antibacterial surfaces in biomedical devices. *Int J Artif Organs*. 34(9) : 929-946.
- Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E. and Kitamura, A. (1997). Light-induced amphiphilic surfaces. *Nature*. 431-432.
- Xu, Q., Fan, Q., Ma, J. and Yan, Z. (2016). Facile synthesis of casein-based TiO₂ nanocomposite for self-cleaning and high covering coatings: Insights from TiO₂ dosage. *Prog. Org. Coatings.* 99 : 223-229.
- Yang, Z.D. (2013). Application of titanium dioxide nanoparticles on textile modification. *Adv. Mater. Res.* 901-905.
- Zhang, H., Yan, H. and Mao, N. (2014). Functional modification with nanoparticles and simultaneously dyeing of wool fibres in a one-pot hydrothermal process. *Ind. Eng. Chem. Res.* 53 : 2030-2041.
- Zhang, H., Yang, Z., Zhang, X. and Mao, N. (2014). Photocatalytic effects of wool fibers modified with solely TiO₂ nanoparticles and N-doped TiO₂ nanoparticles by using hydrothermal method. *Chem. Eng. J.* 254 : 106-114.

1638