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ABSTRACT

When self-excited induction generator stator windings become faulty, there is a specific range of 
faulty turns within which the generator does not lose excitation and continues to operate with high 
current in winding turns. This may cause faults of the generator and the entire unit, since it is believed 
that the generator loses excitation in case of short circuit (SC), and the fault current stops. Obtaining 
the analytical dependency of faulty induction generator currents on the SC point location within 
the stator winding is related to a high number of factors and is complicated by the non-linearity of 
some characteristics. Applying the methods of the experimental design theory makes it possible 
to obtain algebraic expressions in the form that is adapted as much as possible to solve this task.
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INTRODUCTION
Self-excited generators with capacitive self-excitation 
(AG) are applied in wind power generators, 
as generators of mini hydro power plants, etc. 
Theoretical studies and practical experience prove 
the perspectives of applying them in agriculture, as 
well as a backup power supply for animal production 
units and poultry farms (Gashimov and Abdulzade, 
2004). It is known that in most cases (85% to 95%), 
failures of asynchronous machines are associated 
with faults of the stator winding. More than 90% 
of faults represent turn-to-turn short circuits 
(Dzhendubayev, 2002; Toroptsev, 2004). Short-
circuiting of a small number of AG stator winding 
turns cannot significantly change the primary 
magnetic flux of the machine, so it is very likely that 
an AG can operate for a long period with such a 
failure (Kumawat, et al., 2015). A dormant failure in 
the form of a turn-to-turn short-circuit significantly 
reduces the fail-safety of a self-excited AG as a power 
source (Bogdan and Sobol, 2013).

Obtaining the analytical dependency of faulty 

induction generator currents on the SC point location 
within the stator winding is related to a high number 
of factors and is complicated by the non-linearity 
of some characteristics. However, applying the 
methods of the experimental design theory makes it 
possible to obtain algebraic expressions in the form 
that is adapted as much as possible to solve this task 
(Bogdan, et al., 2007).

METHODS
General approaches to solving the task

For the experiment, an AG unit was prepared, 
based on an asynchronous electrical motor with a 
4A100S4U3 squirrel-cage rotor (3 kW, 1435 rpm) (Jain, 
et al., 2002). The generator was driven by a DC motor 
(AG drive with soft speed-torque characteristic) or 
by an asynchronous motor (AG drive with rigid 
speed-torque characteristic). The power capacity of 
driven motors was comparable to that of the AG. 
Generator voltage during SC was maintained at 220 
V (Grigorash, 2002).

The dependency curve between the SC current (A) 
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as related to the rated current and the number of SC 
turns W, %, for an AG drive with soft speed-torque 
characteristic is shown in Fig. 1.

During a multiple-factor experiment (Adler, et al., 
1976; Adler, et al., 1982), three factors were selected, 
having a substantial impact on the process:

‑ Factor X1 -number of turns in the faulty phase(s), 
starting with neutral terminals, %;

‑ Factor X2 -self-excitation circuit capacitance (µF);

‑ Factor X3 -generator circuit active load (W/phase).

Of practical interest for the study is to determine the 
correlation dependency between the above factors. 
A complete factorial experiment 32  was done. The 
curve section, for which the experimental design 
test was done, such as for the SC current in Fig. 1, 
is located between the points A and B. For all other 
values, the same section was used, since they have 
similar dependency. The upper and the lower levels, 
along with variability intervals for experiments with 
turn-to-turn short-circuits, are given in Table 1.

Beta coefficients were calculated taking into account 
the homogeneity of variance under the Kohren 
criteria, and the model adequacy was checked 
under F (Fischer) criterion. As a results, regression 
equations were obtained, taking into account the 
relevance of coefficients for stabilized values of phase 
(I), capacitive (I CAP), load currents (I LD), SC currents 
(I SC) and phase voltages (U). The coefficients of the 
interaction of the factors were not considered in this 
article.

Calculation example

A The methodology of applying the experimental 
design theory will be considered with the calculation 
example for the SC current in case of a "rigid" system 
(for asynchronous motor-driven generators). For this 
purpose, let us calculate the coefficients of regression 
equations; the design matrix is given in Table 2.

For variable factors, the coefficients will be equal to:
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Where j = 0, 1, 2, …, k is the factor number, i = 0, 1, 2, 
…, N is the design line number.

In this manner, the coefficient value is obtained as an 
average of the sum of responses of each design line 
where each response is assigned with a sign from 
the column of the factor for which the coefficient 
is calculated. The levels of factors and variability 
intervals are given in Table 3.

For the interaction of factors, the coefficients will be 
equal to:
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Where j and n = 0, 1, 2, …, k is the number of an 
interacting factor.
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Other coefficients are calculated similarly, and the 
regression equation will look as follows:

 1 2 3 1 2 1 3 2 3 1 2 351.782 4.658 5.302 0.548 3.142 1.708 0.532 0.041Y Х Х Х Х Х Х Х Х Х Х Х Х= − + − + − + −

To assess the response deviations from the average 
value, we should calculate the repeatability 
dispersions according to the results of n parallel 
observations of the experimental design matrix in 
each point by using the following formula:
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Where 2S ν  is the dispersion in the v-th point; i is 
the sequential number of the parallel experiment in 
this design point; Yvav is the mean arithmetic of the 
response in m parallel experiment in point ν; Yvi is the 
response value in the v-th point.
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Similarly, other dispersions are calculated. The sum 
of dispersions will be as follows:

2

1
2.52 0.564 0.537 0.333 0.813 1.333 0.314 2.442 8.893

N

v
v

S
=

= + + + + + + + =∑Fig. 1 SC current dependency on the number of short-
circuited turns

Factors
Levels of factors Variability 

intervals-1 +1
X1

3 15 6
X2

28 40 6
X3

100 300 100

Table 1. Levels of factors and variability intervals
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Now, having the maximum dispersion S2
vmaxwe find 

the Kohren calculation criterion:
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The number of the degrees of freedom for lines 
f1=3-1=2. For columns f2=8. The tabular value of the 
criterion Gcr=0.516. Since 0.283 ≤ 0.516, the Kohren 
criterion is met.

Now let us check the relevance of the regression 
equation coefficients under the Student criterion:
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The dispersion of the regression coefficient 
calculation error is found. For the equal number of 
parallel experiments n in all points of the matrix 
design, regression coefficient calculation errors are 
calculated using the following formula:
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Now let us find the root-mean-square dispersion 
deviation for the regression coefficient calculation 
error:
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Now let us check the relevance of regression 
coefficients under the Student t-criterion: For each 
coefficient, we calculate the value of the tj -criterion:
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Where tj  is the Student criteria; jb  is the modulus of 
the calculated regression criterion.
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Other values are calculated in a similar fashion.

The number of degrees of freedom fc=N(n-1)=16. 
Fischer criterion's tabular value tcr=2.12

To check the model adequacy under the mathematical 
model (regression equation), the response value  
Yv,p is calculated for each matrix design line, e.g., 
with respect to the factor sign, the design includes 
an algebraic sum of equation coefficients. Now we 
calculate the difference between the average Yv,av and 
rated Yv,p response values in each line. This difference 
is squared and the results obtained are summed up.

The adequacy dispersion is assessed using the 
formula:
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Where l is the number of relevant coefficients 
(including b0).

The model adequacy is checked under the Fischer 
criterion:
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where F is the Fischer criterion; S2
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of adequacy dispersion.
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Coded designations of factors Coded designations of 
combinations of products

Actual response values 
upon the results of parallel 

experiments

Average 
response 

value
 X0 X2 X2 X1X2 X1X2 X1X3 X2X3 Y1 Y2 Y3 Yav

1 + + + + + + + 55 54.4 53.8 53.8
2 + - - + + - - 57.28 57.32 56 56.867
3 + - + - - + - 54 55.2 55.4 54.867
4 + + - + - + + 57 57 58 57.333
5 + + + - + - - 36.8 35 36 35.933
6 + - + + - - + 61 59 61 60.333
7 + + - - - - - 41.4 40.88 42 41.427
8 + - - - + + + 52 55.08 54 53.693

Table 2. Experimental design matrix for SC current

Factors Levels of factors Variability intervals-1 +1
X1 3 15 6
X2 30 70 20
X3 0.2 0.5 0.15

Table 3. Levels of factors and variability interval
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The number of degrees of freedom for lines 
ff2=N(n-1)=16 and for columns ff1=N-17=7. Fischer's 
tabular value Fcr=11.665. 11.665 > 0.037 and the 
condition is met.

DISCUSSION AND RESULTS

When the AG is driven by a drive with soft speed-
torque characteristic, Index 1 is used, and when the 
AG drive has a rigid speed-torque characteristic, 
Index 2 is used.

As a result of experimental data processing during 
turn-to-turn short-circuits in the winding of a single 
phase, the equations for a faulty phase A were 
obtained as follows:

-stator phase currents

IA1=4.87-0.864* X1+0.892* X2+0.228*X3

IA2=6.16-0.951* X1+1.572* X2-0.149*X3

- capacitance currents

ICAPA1=4.79-0.95* X1+0.754* X2+0.189* X3

ICAPA2=6.248-0.938* X1+1.484* X2-0.175* X3

- loading currents

ILDA1=0.674-0.08* X1+0.022* X2+0.348* X3                                  (11)

ILDA2=0.737-0.07* X1+0.047* X2-0.370* X3

- currents in short-circuited turns

ISC1=49.894-1.274* X1-1.343* X2-3.857* X3

ISC2=51.782-4.658* X1+5.302* X2-0.548* X3

- voltages on asynchronous generator terminals

UA1=167.523-36.204* X1+8.172* X2+4.661* X3

UA2=189.379-32.571* X1+16.638* X2-5.729* X3

These dependencies show that for the increased 
number of short-circuited turns, the phase current, 
the SC current and all other currents go down. For 
a soft speed-torque characteristic, the current in the 
faulty phase increases with the load. For an AG drive 
with rigid speed-torque characteristic, the loading 
increase causes the current of the faulty phase to 
decrease. When the self-excitation capacitance 
increases, so does the phase current. The capacitance 
current and the phase voltage change in a similar 
way. Loading current equations have the same 
nature, the SC current in an AG drive with rigid 
speed-torque characteristic increases together with 
the self-excitation capacitance unlike the AG drive 
with soft speed-torque characteristic. 

The current dependences in steady conditions 

for non-faulty phases have the same nature. For 
example, for the phase B, the regression equations 
with respect to coefficient will be as follows: 

IB1=5.104-0.739* X1+0.939* X2+0.248* X3

IB2=6.443-0.740* X1+1.638* X2-0.155* X3

ICAPB1=4.992-0.8* X1+0.858* X2+0.222* X3

ICAPB2=6.478-0.713* X1+1.548* X2-0.169* X3             (12)

ILDB1=0.718-0.054* X1+0.021* X2+0.37* X3

ILDB2=0.779-0.046* X1+0.043* X2+0.387* X3

UB1=185.817-25.333* X1+9.058* X2+5.642* X3

UB2=220.248-17.832* X1+19.295* X2-5.657* X3

The experiments were also done for phase-to-phase 
short circuits. It was understood that in case of 
symmetrical two-phase short-circuits, the factor of X1 
is the number of turns in faulty phases, and in case of 
asymmetric short-circuits, this is the total number of 
turns in faulty phases.

For symmetric two-phase short-circuits, the number 
of short-circuits turns in the phases A and B was 
taken as 3% and 10% for two levels, respectively. For 
non-symmetrical short-circuits in the lower level, the 
number of short-circuits turns in the phase A was 
taken as 1%, that for the phase B as 3%. For the upper 
level, the number of short-circuits turns in the phase 
A was taken as 3%, that for the phase B as 15%. 

Regression equations for SC currents, phase currents 
and loading currents for non-symmetrical phase-to-
phase short-circuits for one of the damaged phases 
(phase A) are as follows:

ISC1=36.605-1.745* X1+3.005* X2-0.395* X3

ISC2=45.075-0.175* X1+4.425* X2-1.825* X3

IA1=4.686-0.925* X1+0.988* X2+0.34* X3

IA2=6.2-0.913* X1+1.738* X2-0.175* X3

ICAPA1=4.681-0.809* X1+0.884* X2+0.259* X3            (13)

ICAPA2=6.37-0.795* X1+1.567* X2-0.195* X3

ILDA1=0.703-0.07* X1+0.021* X2+0.363* X3

ILDA2=0.768-0.05* X1+0.039* X2+0.381* X3

UA1=173.25-31.75* X1+12.15* X2+7* X3

UA2=208.25-28.75* X1+17* X2-10.25* X3

For a non-faulty phase C, regression equations for 
phase and capacitive currents will be as follows:

C1=4.744-0.912* X1+0.982* X2+0.038* X3

C2=6.588-0.688* X1+1.742* X2-0.201* X3	                 (14)
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ICAPC1=4.84-0.802* X1+1.002* X2+0.275* X3

ICAPC2=6.612-0.657* X1+1.553* X2-0.218* X3

Equations for loading currents and phase voltages 
will be as follows:

ILDC1=0.699-0.07* X1+0.017* X2+0.359* X3

ILDC2=0.771-0.044* X1+0.041* X2+0.384* X3              (15)

UC1=170.688-35.688* X1+6.438* X2+14.063* X3

UC2=219.875-19.875* X1+20.425* X2-5.95* X3

These equations show that in both phase-to-phase 
and turn-to-turn short-circuits, for an AG drive with 
soft speed-torque characteristic, the loading increase 
causes phase currents to be increased, and for an AG 
drive with rigid speed-torque characteristic, it causes 
them to go down. SC currents in both cases increase 
when the self-excitation capacitance does. Loading 
currents behave the same in both cases.

For symmetric phase-to-phase SC, these regression 
equations for phase A look as follows:

ISC1=39.185-3.915* X1+3.165* X2-1.185* X3

ISC2=48.975-0.915* X1+4.685* X2+0.055* X3

IA1=4.487-0.918* X1+0.827* X2+0.282* X3

IA2=6.172-0.858* X1+1.655* X2-0.19* X3

ICAPA1=4.579-0.829* X1+0.68* X2+0.168* X3              (16)

ICAPA2=5.583-0.054* X1+2.054* X2+0.481* X3

ILDA1=0.673-0.079* X1+0.015* X2+0.348* X3

ILDA2=0.751-0.052* X1+0.039* X2+0.379* X3

UA1=166.325-33.075* X1+8.925* X2+6.675* X3

UA2=207.475-22.475* X1+19.475* X2-5.525* X3

Unlike phase-to-phase asymmetric and turn-to-turn 
short-circuits, the capacitance current for both types 
of the generator drives increases along with the load. 
When the generator load is increased, so is the SC 
current.

CONCLUSION
Applying the experimental design theory allowed 
analyzing the impact of various factors onto primary 
parameters of the asynchronous generator by using 
algebraic expression in a convenient-to-use form, 
which allows studying phenomena occurring within 
the machine.

It has been established that when the loading 
increases, the current in the faulty phase falls down. 

When the self-excitation capacitance increases, so do 
the currents in the faulty phase. With the increased 
number of SC turns, the currents in the phase fall 
down. Capacitance current and phase voltage change 
in a similar way. 

Current dependences in steady conditions for non-
faulty phases have the same nature. The SC current 
value depends on the generator drive speed-torque 
characteristic. The SC current in an AG drive with 
rigid speed-torque characteristic increases together 
with the self-excitation capacitance unlike the AG 
drive with soft speed-torque characteristic.
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