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INTRODUCTION 
Now-a-days, small-scale and distributed energy 
generation can be considered as a reasonable and 
timely development of the traditional energy sector, 
which is characterized by large and high-power 
generation facilities, usually located in the areas 
with the highest density of electricity consumers. 
The structure of the traditional energy grids causes 
tariff growth because of unavoidable long distance 
transmission losses and local electricity shortages, 
which reduce the regional competitive value and 
deter investments.

Small-scale and distributed power generation can 
largely solve such problems by generating electricity 
in close proximity to the consumer.

This type of generation facilities should be based 
on reliable thermal engines that offer low operating 
costs, high fuel efficiency and low emissions.

Many researchers and experts consider engines with 
external feed of heat (EEFH) to be one of the promising 
solutions for development of power generators for 
small-scale, distributed and autonomous energy 
supply.

Using EEFH in the energy balance of existing 
production facilities would increase their efficiency 
through utilization of the waste heat produced by 
various technological processes. Also, the multifuel 
capacity of EEFH allows to use various organic fuels, 
including local fuels.

There are two main structural types of EEFH: engines 
with a drive mechanism and free-piston Stirling 
engines (FPSEs). The advantages and drawbacks of 
both EEFH types are well known (Walker and Senft, 
1985).

Here we present a calculation method and results 
of calculation studies of an FPSE with power output 

ABSTRACT

This paper presents the results of calculation studies of a free-piston Stirling engine. They 
were done using our proposed method of calculation, which combines adiabatic calculation of 
the engine's thermodynamic parameters with dynamics of the displacer and working piston 
oscillations.

The purpose of our work is to determine the basic thermodynamic parameters of a free-piston 
Stirling engine, parameters of the displacer/working piston oscillation system and the range of 
payload changes, which collectively make it possible to create the necessary conditions for the 
self-oscillation process in the engine.

We demonstrate the principles of determining the FPSE set point. The obtained characteristics of 
the self-oscillation process are the basis for development and fine-tuning of active control systems 
and an algorithm of the engine operation.

The obtained results facilitate the choice of external load devices that would 
be well coordinated with the dynamic system of the FPSE. The possible load 
devices include power generators, pumps and compressors with linear action. 



1604 SHUSTROV ET AL.

of about 1 kW, designed for use in micro-generation 
power units (micro-CHP) for joint generation of 
thermal and electric energy. Important optimization 
parameters for this type of power plants are acoustic 
and vibration effects on the environment, fuel 
efficiency and minimal operating costs.

The success of development of an efficient FPSE 
depends on the accuracy of calculation studies that 
must be done using mathematical models of the 
working cycle and dynamics of the displacer and 
working piston oscillations.

FPSE without a mechanical connection between the 
displacer and the working piston is two oscillatory 
systems, each consisting of a mass, a spring and a 
damping component.

Different combinations of operational oscillation 
frequency and phase displacement are supported 
by mechanical or gas springs, which should ensure 
stability of the system's oscillations. Unstable 
oscillatory motion halts the engine or causes an 
undesirable piston stroke increase. The joint motion 
of the displacer and the working piston must also 
maintain a stable thermodynamic cycle.

Non-linearity of the FPSE oscillatory system is 
caused by losses of the working fluid pressure in 
the inner chambers and changes of the gas spring 
characteristics.

The need to create a mathematical model and do 
calculation studies is explained by the fact, that there 
are not enough dynamic models at present that would 
allow to simulate the operation of the FPSE in steady 
and transient modes and provide high accuracy in 
comparison with the actual characteristics of the 
engine.

The data that can be obtained using mathematical 
models at the early stages of FPSE development are 
sufficient to set technical parameters of an automatic 
engine control system. It should be borne in mind 
that it is not possible to create an effective FPSE 
control system without detailed information on the 
dynamic characteristics of the engine.

The computational methods for determining the 
operation parameters of FPSEs first appeared and 
began to develop in the 1970s after the W.T. Beal's 
invention of a free piston Stirling engine (Beale, 
1969).

Numerous studies by many authors tackle the 
problems of FPSE modeling and design. Among 
other things they investigate stability and frequency 
characteristics of the engines.

(Urieli, 1977) presents a unidimensional model, based 
on differential equations of continuity, momentum, 
and energies of the working fluid, regenerator and 
walls of the heat exchanger.

(Berchowitz, 1978) proposed a development of the 
(Urieli, 1977) model, offering several refinements, 
such as using the losses caused by viscous dissipation 
in the working fluid. The resulting computational 
model allows to investigate various thermodynamic 
and gas dynamic processes that take place in the 
engine.

(Urieli and Berchowitz, 1984) developed an analytical 
solution based on a linearized thermodynamic model 
for calculating engine characteristics, which offers a 
good compromise between simplicity and accuracy.

(Berchowitz, 1986) presents a second-level 
computational model, built for preliminary design 
and optimization of systems and FPSEs as a whole.

Another paper (Formosa and Despesse, 2013) 
proposes an analytical thermodynamic model that 
takes into account heat losses and parameters which 
determine the efficiency of the heater, regenerator 
and cooler.

(Redlich and Berchowitz, 1985) solve problems 
related to linear dynamics and stability of FPSEs 
using fundamentals of the control theory. The 
analysis of stability is based on studying the roots of 
a characteristic equation.

The paper (Rogdakis, et al., 2004) presents a method 
based on integral management of FPSE dynamics. 
Standard management tools, including the root 
locus, are used to obtain fundamental information 
about the dynamic behavior of the system. The 
proposed approach allows to match the power 
of the FPSE with an external load, for example, a 
linear electric generator and various pneumatic and 
hydraulic devices.

(Ulusoy, 1994) presents a study of FPSE carried out 
using nonlinear analysis and numerical modeling. 
It is established that nonlinear spring stiffness, 
damping load and pressure losses along the heat 
exchange contour are sufficient to maintain stable 
oscillatory motion of the displacer and the working 
piston.	

The paper (Formosa, 2011) presents a combined 
computational model of an FPSE, which combines 
thermodynamic and dynamic models with a 
common iterative mechanism.

The main focus of (Shrestha, 2012) is set on the 
study of boundary cycles in FPSE, used to model 
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METHODS
General description of FPSE

In this paper we consider a beta-configuration FPSE, 
the computational scheme of which is shown in 
(Fig. 1). The displacer and the working piston (WP) of 
mass md and mp, respectively, are moving elements 
of the engine.

The engine has an internal space filled with the 
working fluid, which is divided into 5 chambers: 
the compression Vc and expansion Ve chamber 
and other chambers formed by the elements of the 
heat exchange circuit, which includes a heater Vh, 
a regenerator Vreg and a cooler Vk. There are 2 extra 
chambers forming the gas spring (GS) of the displacer 
and the buffer chamber (BC) of the working piston. 
The displacer and the working piston (WP) have no 
mechanical contact with each other and oscillate in 
the internal space of the engine.

The displacer and the WP move together due to the 
action of inertia forces, gas springs and the pressure 
difference between the compression and expansion 
chambers.

The working piston of the engine is connected to a 
linear electrical machine (LEM), which creates an 
external load on the engine and generates electricity.

Calculated dependencies

The linearized mathematical model is based on 
the data presented in (Urieli and Berchowitz, 
1984). Several assumptions have been made in the 

the behavior of real oscillatory systems. Numerical 
studies allow to determine the parameters that lead 
FPSEs to the Hopf instability state.

(Riofrio, et al., 2008) presents a methodology for 
designing an FPSE with power output of up to 1 kW. 
This approach is based on the system's dynamics 
and control theory, where the equations of state 
are replaced by elements of the dynamic system 
simulation.

(Choudhary, 2009) considers quasi-stable 
dynamic systems of FPSEs with alpha- and beta-
configurations and a double-action engine, which 
makes these systems sensitive to disturbances. This 
paper demonstrates a search for the solution of a 
dynamical system using the Hopf bifurcation.

(Begot, et al., 2013) presents an analysis of stability 
of an FPSE, performed using eigenvalues of the 
matrix used in the calculation model. The influence 
of operational and design parameters on the 
characteristics and stability of the engine has also 
been determined.

(Saturno, 1994) considers ideal isothermal analysis, 
adiabatic analysis of the Stirling cycle, and dynamic 
calculation of the engine. The studies were divided 
into experimental and analytical parts. In the course 
of the experimental analysis, the parameters and 
conditions necessary for controlling the operation 
of the engine were determined. It was followed by 
development of three nonlinear models used to 
predict the behavior of the engine.

(Jang, et al., 2016) proposes a new method for 
determining physical parameters of an FPSE running 
at a given frequency. According to the method, the 
engine's dynamics is described as a transfer function 
with a feedback mechanism and a simplified Nyquist 
stability criterion is used to determine the operating 
conditions of the engine.

(Sim and Kim, 2015) demonstrates a method for 
determining the performance of an FPSE, based on 
a linear and nonlinear dynamic analytical models, 
which takes into account external load on the engine. 
Linear analysis in this paper utilizes the root locus 
technique, and is used to determine the FPSE set 
point.

(Sim and Kim, 2016) presents a method for estimating 
the damping coefficients, using calculated models 
of linear and nonlinear FPSE dynamics. The 
computational model defines the operating range 
of linear damping coefficients, which form the 
boundary cycles using a root locus. Fig. 1 Computational scheme of an FPSE.
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mathematical model:

- The processes inside the compression and expansion 
chambers are isothermal and the processes in the GS 
and BC are adiabatic;

- The motion of the displacer and the working piston 
is sinusoidal;

- The mean pressure of the working fluid inside the 
engine and pressure drop in the heat exchangers can 
be linearized;

- The regenerator is ideal;

- The working fluid flows unidirectionally;

- There are no heat losses.

It is accepted that the differential pressure Δp 
between the expansion and compression chambers 
is written as:

cpepp −=∆                                                                         (1)

Assuming that Δp is predominantly associated with 
damping forces in the elements of the heat exchange 
circuit, we make an expression:

pA p C x C xpd d d∆ = +                                                            (2)

The basic equation of FPSE dynamics, compiled on 
the basis of the Newton's second law and in the view 
of our representation of pressure loss and damping 
forces, is written as follows:

( ) ( )m x C x C C x A p pp p r cd d d Hd d d= + − + −                          (3)

( ) ( ) pm x A p p C Cp p p c Hpb palt x= − − + 

Where mp and md are the values of the displacer and 
WP mass;

xp and xd are the displacements of the displacer and 
the WP;

Ad, Ap and Ar are the cross-sectional areas of the 
displacer, WP and the displacer GS;

pe, pc, pd and pb are the pressure of the working fluid 
inside the expansion and compression chambers, in 
GS and BC; 

Cpalt is viscous damping by the LEM;

CHp and CHd are coefficients of the viscous damping 
in the gas springs of the displacer and the WP.

Hysteresis losses in gas springs

Theoretical hysteresis losses Wd and Wb, which occur 
in the displacer GS and BC of the working piston 
respectively, are represented as forces of viscous 
damping applied to the displacer and the WP. Wd 

and Wb are determined using the dependencies 
presented in the paper (Scheck, 1988):

( )1 1.50.5 21 02 sW k f p T r Awssd d Vdγ γ π= − ⋅ ⋅ ⋅ ⋅ ⋅ ∆
      

          (4)

( )1.50.5 2
0

1 1
2b b b wb Vb bW k f p T r Aγ γ π ∆= − ⋅ ⋅ ⋅ ⋅ ⋅

Where kd and kb are the stiffness of the GS and BC;

f is the frequency of the engine oscillation;

ps0 and pb0 are mean pressure in GS and BC;

Tws and Twb are mean temperature of the inner wall 
of GS and BC;

rΔVd and rΔVb are the ratio of GS and BC;

As and Ab are the average areas of the inner surface 
of the GS and BC.

The damping coefficients in the displacer GS - CHd 
and the WP buffer chamber - CHp are determined by 
the following dependencies:

2
1

max2

WdC xHd d
dπω

−

=
 
 
 

                                                   (5)

2
1

max2

Wb x pHp
p

C
πω

−

=
 
 
 

Where ωd and ωp are the angular velocity of the 
displacer and the WP;

xdmax and xpmax are the maximum displacement of the 
displacer and the WP.

Calculation of pressure

A linearized expression for determining the WF 
pressure change in the compression chamber pc 
during a cycle with an average WF pressure pmean is 
written as an abbreviated Taylor series expansion:

( )
1

A x A A x A xp p rd d d dp pc mean ST STk h

− −
= − −

 
 
 
                      

(6)

Where the S parameter, which depends on the 
volume of internal spaces of the elements of the 
heat exchange circuit and the dead volume of the 
compression and expansion chambers, is calculated 
by the formula:

p pc regk h d de

k k reg h h

A x VV V A xS
T T T T T

= + + + +                                                (7)

Where xpc and xde are the gaps in the compression 
and expansion chambers at corresponding positions 
of the working piston and the displacer at the top 
extreme points;

Vh, Vreg and Vk are internal volumes of the heater, 
regenerator and cooler, respectively;

Th, Тreg and Tk are the WF temperature in the heater, 
regenerator and cooler, respectively.
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In this case, the WF temperature Тreg in the regenerator 
is defined as a logarithmic average:

ln

h k
reg

h

k

T TT
T
T

−
=

 
 
 

                                                                   (8)

The average WF pressure pmean during the cycle is 
determined taking into account the mass of WF - mg 
and the gas constant R:

S
Rm

p g
mean =

                                                                  (9)

Pressure in the gas springs

The volumes of the displacer GS - Vd and the working 
piston BC - Vb change according to the adiabatic law 
and depend on the position of the displacer and the 
WP:

drdd xAVV −= 0       		                                 (10)

ppbp xAVV −= 0   
Where Vd0 and Vb0 are the volumes of GS and BC in 
the median position of the displacer and the WP.

Based on the assumption that the motion of the 
displacer and the working piston is sinusoidal, the 
following expressions are used to determine the 
coordinates of the displacer - xd and the WP - xp:

ti
dd exx ω

max=                                                              (11)
)(

max
ϕω += ti

pp exx
    

where φ is the phase displacement between the 
displacer and the WP.

Thus, the change of WF pressure inside the gas 
spring is written as:

 
1

0

Arpmeand V xd d
p

γ−

= −
 
  
 

                                              (12)

1
0

App pmeanb V xpb

γ−

= −
 
  
 

The stiffness values of GS - kd and BC - kb are 
calculated taking into account the properties of the 
gas used in the gas spring, which are taken into 
account by the specific heat ratio of the gas γ = cp/cv 
(Walker and Senft, 1985):

d

rd
d V

Apk
2γ

=
                                                           

       (13)

b

pb
b V

Ap
k

2γ
=

Where pd and pb are the average pressure in the 
displacer GS and the working piston BC;

Vd and Vb are the average volume of the displacer GS 
and the working piston BC.

Pressure losses in the heat exchange circuit elements

All elements of the heat exchange circuit have 
internal resistance, which causes loss of pressure as 
the WF flows through. Determining the pressure loss 
requires to investigate the processes of WF motion 
inside the engine's heat exchange circuit.

The WF motion is caused by changes of the volume 
of the compression chambers Vc and expansion of Ve 
in time. The volumetric flow rate of WF through the 
heat exchange circuit is calculated as the difference 
between Vc and Ve:

( ) drdpp xAAxAV  −−= 2                                                (14)

Despite the fact that the conditions of WF flow 
through the heat exchange circuit of the engine 
change cyclically, we use standard expressions to 
determine the friction loss coefficient Cf along the 
length of the pipeline for different values of the 
Reynolds criterion:

64
Re 2000;

Re
Re 2000-0.250.316Re

if
C f

if

≤
=

>

 
 
 
  

                                          (15)

Taking into account the head loss coefficient khL, 
which depends on the configuration of the flow 
channel, including expansions and narrowings of 
the channel, the pressure drop is calculated by the 
formula: 

2

2f hL
L up C k
d

ρ ∆ = + 
 

                                                            (16)

Where L is the length of the calculated channel;

d is the hydraulic diameter of the channel;

ρ and u are the density and speed of the WF.

To linearize the expression (16), an equivalent 
linear damping parameter Ceq is introduced, which 
dissipates this energy due to the pressure losses.

Thus, the pressure losses, expressed through Ceq, are 
determined by the formula:

eqp C u∆ =                                                                   (17)

In this case, the Ceq coefficient is calculated with the 
help of an expression that uses the maximum WF 
speed umax:

4
max3

L
C u C keq f hLd

ρ
π

= +
 
 
 

                                       (18)

The total value of the WF pressure losses in the heat 
exchange circuit of the FPSE is determined by the 
following expression:
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( )4 1
2max 2, ,3

L
p V A x A A x C kp p r id d f hLi h r k d Ai i

ρ
π

∆ = − − ⋅ + ⋅∑Σ =

           
  

                            

					                   (19)

Where the expression to find the maximum WF flow 
rate, in which the indices i = h, r, k correspond to the 
heater, regenerator and cooler, is represented as:

 ( ) ( )22 2 22 2 cos 2max max maxmax maxV A x A A x A x A A xp p r p p rd d d dω φ= − − + −

                	
					                   

(20)

Viscous damping of the displacer and working 
piston

Equations (2) and (19) make it possible to compute 
the dependences for calculating the viscous damping 
coefficients of the displacer - Cd and the working 
piston - Cp, using the coefficient B for simplicity:

C BA Ap pd=                                                                                 (21)

(2 )C BA A Ard d d= − −                                                                (22)

4
max 2, ,3

LiB V C kf hLi h r k dA ii

ρ

π
= +∑

=

    
   

                    (23)

The net mechanical power of the engine is determined 
for the angular velocity ω and the maximum WP 
displacement xpmax. We take into account the damping 
coefficient Cpalt, which simulates resistance from the 
LEM side, according to the following formula:

2 2
max

1
2m palt pP C xω=                                                      (24)

We can calculate the electric power of the FPSE based 
power plant taking into account the obtained value 
Pm and efficiency of the available LEM.

Stiffness and damping matrix

The dynamics of the oscillatory system of the FPSE, 
which includes a mass, a gas spring and a damper, 
is written in the form of a system of differential 
equations:

p

pp pd pp pdp d

d pdp dd dp dd

d

x
K K D Dx x

x xK K D D
x

 
     = ⋅          
 



 



                 (25)

The stiffness coefficients K, which depends on the 
fixed geometric and operating parameters of the 
engine that remain constant throughout the engine 
operation, and the damping coefficients D, which 
depends on the pressure losses, engine frequency, 

stroke and phase angle between the displacer and 
the WP, are determined according to the following 
formulas (Urieli, 1984):

2

0

1 ;p mean
pp

p k b

A p
K

m T S V
γ 

= − + 
 

;p mean d d r
pd

p h k

A p A A AK
m S T T

 −
= − + 

 

1 r p mean
dp

d k

A A p
K

m T S
= − ;

0

A A AA p Arr mean d d rK pd m ST ST Vd h k d
γ

−
= − − +

 
  
 

;
C CHppaltDpp mp

+
= −

;
0Dpd =

;
C pDdp md

= ;

( )1
D C Cdd d Hdmd

= − .

METHOD AND CALCULATION ALGORITHM

The main goal of our calculation studies is to solve 
the system of differential equations (25) and analyze 
the dynamics and stability of the self-oscillatory 
process in the FPSE.

We took the SPIKE engine (this abbreviation stands 
for "Sunpower 1 kW Engine") as the prototype and 
used its known operation parameters to simplify the 
calculation. The formulas presented above are used 
for calculation and the operating parameters of the 
SPIKE engine are used as the initial data (Berchowitz, 
1986).

The purpose of the calculation studies is to determine 
the set point of the engine, where its self-oscillations 
are stable. The set point is determined by a complex 
of parameters including the mass of the displacer 
and WP, phase angle, thermodynamic parameters of 
the operating cycle and internal volume of the heat 
exchange circuit elements.

Determining the engine set point makes it possible to 
calculate the operating frequency of oscillations and 
the value of the LEM side damping load coefficient 
Cpalt. Then, the power capacity of the FPSE is 
computed using the Cpalt coefficient.

An iterative calculation algorithm, in which the 
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unknown parameters are the position of the displacer 
and the WP, phase angle and engine's operating 
frequency, makes good sense for optimization 
of existing FPSE designs or development of new 
engines.

In this case, the K and D coefficients in the system 
of equations are first determined using a preliminary 
combination of engine oscillation frequency, phase 
angle and stroke of the displacer and WP. The 
calculation yields refined values of these parameters 
and the process is repeated until the preset value of 
result imprecision is reached.

ANALYSIS OF DYNAMICS AND STABILITY

Analysis of FPSE dynamics and stability is generally 
a linear analysis of eigenvalues of its state matrix. 
The purpose of the linear analysis is to determine the 
operating frequency of the engine oscillations with 
the help of a root locus, created for different values 
of the LEM-side damping load coefficient Cpalt. It is 
assumed that the external load applied to the WP 
from an electric generator or another mechanical 
device is a linear damper.

The damping processes that occur during FPSE 
operation are divided into internal and external 
processes. Internal damping is a linear damping 
with displacer Cd and a working piston Cp damping 
coefficients. It characterizes numerically the losses 
caused by relative motion of the WF flow between 
the cylinder and the pistons of the engine. External 
damping, which includes the damping load from 
electric generators or other mechanical devices, is 
represented in this paper by the Cpalt coefficient.

Long-time stable operation of an FPSE without any 
significant changes of the external load requires 
the displacer and WP oscillations to form a self-
oscillation process, which creates internal and 
external conditions that support the oscillations.

In order to estimate the conditions capable of 
supporting the process of self-oscillation, we write a 
system of equations that includes a spatial matrix of 
states [M].

The equation of state for the dynamic system of an 
FPSE (25) is written in the following form:

[ ]


















=

d

p

d

p

x
x
x
x

X




;

[ ] [ ][ ]XMX = ;

[ ]

0 0 1 0
0 0 0 1

M K K D Dpp pppd dp
K K D Ddp dd dp dd

=

 
 
 
 
 
 

Next, four eigenvalues of the matrix [M] are 
calculated, which enable us to determine the engine 
set point. Thus, analysis of the eigenvalues makes 
it possible to get an idea of the FPSE oscillations 
stability.

It is known that two conditions must be met to 
maintain the self-oscillation process.

1) The first pair of eigenvalues should be two 
imaginary parts of the eigenvalues in which the real 
part is zero. In this case, a boundary cycle is formed 
and these conditions define the set point of the 
engine's self-oscillating system.

2) The second pair of the eigenvalues must have two 
negative real parts, which must be large enough to 
ensure a shorter transient time.

The process of determining the FPSE set point consists 
in analyzing the eigenvalues obtained with the Cpalt 
coefficient, which is changed within an established 
range. The obtained eigenvalues enable us to plot a 
graph allowing to check visually the existence of the 
engine set point, which is the point of intersection of 
the limit path with an imaginary axis. In this case the 
real part of the eigenvalue is zero and the imaginary 
part is the angular velocity, used to determine the 
frequency of the engine oscillations.

RESULTS

The calculation studies determined the engine 
set point and the corresponding value of the Cpalt 
coefficient. The resulting data made it possible to 
calculate the oscillation frequency and mechanical 
power of the FPSE, which were further used in 
comparison with similar parameters of the SPIKE 
engine, chosen to evaluate the adequacy of the 
calculation studies.

(Fig. 2) shows the root locus composed of eigenvalues 
from the matrix [M] while the Cpalt coefficient changes 
in the range of 0 to 500 (N·s)/m.

The obtained eigenvalues of the state matrix [M], 
presented in Table 1, correspond to the self-oscillation 
process conditions presented earlier.
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DISCUSSION
The calculation studies of the FPSE presented in this 
paper show that even a rather simplified version of 
the engine is a complex thermodynamic system.

Comparative Table 1 shows the results of the 
calculation studies and their comparison with the 
parameters of the SPIKE engine.

Stability of FPSE operation was estimated by 
analysis of the eigenvalues from the state matrix 
[M]. Evaluation of the engine performance was done 
using its design and thermodynamic parameters.

The values of the damping load Cpalt, obtained 
during the calculation studies, are included in the 
main technical requirements for LEM. Using the 
Cpalt coefficient will make it possible to choose or 
design a LEM, which has good compatibility with 
the FPSE.

Joint use of calculated data and results of experimental 
studies is very important for FPSE development and 
research. FPSE operation depends on many non-
stationary and miscellaneous processes, that are 
often difficult to calculate in an analytical way.

The main goal of the calculation studies was 
to determine the engine set point, because this 
parameter is most important for evaluating the 

external and internal factors that can ensure stability 
of the self-oscillation process in the FPSE.

It is established that the results of the calculation have 
a rather high divergence from the actual parameters of 
the SPIKE engine. It is assumed that the divergences 
are caused, first of all, by the assumptions made in 
the calculation method and unknown WF pressures 
in the GS of the displacer and the buffer chamber of 
the WP. The calculation did not take into account the 
elastic connection between the engine casing and the 
fixed base to which the engine is mounted.

Nevertheless, the calculations demonstrate a good 
response of the proposed calculation method to 
changes in the initial data during investigation of 
stability of the engine oscillations.

There are different ways to refine the calculation 
method, including the use of empirical coefficients 
and dependencies obtained from the results of 
experimental studies of the engine. Such approach 
will allow for fast and accurate calculation of FPSEs 
of a similar configuration and comparable geometry.

CONCLUSIONS
In this paper we presented a method for calculating 
an FPSE and did calculation studies to determine the 
necessary conditions to maintain the self-oscillatory 
process of the FPSE.

The results obtained were compared with actual 
characteristics of the SPIKE engine and the 
discrepancy between the values was 18%.

The paper describes a universal method for 
determining the FPSE set point, which takes into 
account a set of engine parameters including the 
mass of the displacer and the WP, the volumes of 
the working chambers and elements of the heat 
exchange circuit, the pressure and temperatures of 
the working fluid.

The results of this work can be used in the 
development of FPSEs of different capacity and 
volumetric displacement because our calculation 
method accounts for a complex of engine 
parameters. High relevance of the presented work is 

 

Fig. 2 FPSE root locus.

Parameters Calculated results SPIKE Discrepancy, %
Mechanical power Pm, W 1022.3 1250 18.2
Oscillation frequency f, Hz 73.2 60 18
Coefficient of damping load Cpalt, (N·s)/m 10.75 - -

Eigenvalues

0.01 + 459.72i;

- -
0.01 - 459.72i;

-244.25 + 288.54i;
-244.25 - 288.54i

Table 1. Results of calculation studies
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confirmed by complex nature of FPSE development, 
especially in the absence of experimental data. It is 
determination of the preliminary FPSE set point that 
can form the basis for creation of a new FPSE. Our 
calculation method, which includes analysis of FPSE 
self-oscillation process stability, will make it possible 
to implement multi-parameter optimization of its 
systems and operating parameters.

The obtained results will also help to choose 
external load devices, such as linear action pumps 
and compressors. Moreover, the parameters of 
the external load will be well coordinated with the 
dynamic system of the FPSE.

The obtained values and the principles of determining 
the FPSE set point are a valuable component in the 
development of active FPSE control systems.

One of the directions of future development is 
creation of an FPSE operation algorithm and its 
implementation in an engine control system. This 
would make it possible to maintain the required 
phase angle and the amplitude of the displacer and 
working piston oscillations when the engine operates 
in steady and transient modes.
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