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ABSTRACT

Prediction plays an important role in air quality monitoring. However, nowadays, the main difficulty is to accurately 
predict the impact of pollution sources on the environment due to atmospheric dispersion models that are not ac-
curate enough. To solve these problems, this paper proposes a coupling between an optimisation model and a pre-
diction model. In this work, a Genetic Algorithm Coupled With Neural Networks (GA-ANN) was used to predict 
the concentration of pollutants in the Yassa region. Thus, the genetic algorithm was used as an objective function 
optimisation tool and the neural networks were used as a data learning tool to predict the concentration values. The 
model takes into account the meteorological parameters of the study area and the source over 5 years, from January 
2017 to December 2021. To evaluate the model, two indices are used to indicate the performance of the prediction 
model; the squared correlation coefficient R2 whose value in the test case is about 0.88 and the Root Mean Square Er-
ror (RMSE) whose best value is about 0.0044. We also evaluated the optimisation methods and found that compared 
to the particle optimisation swarm, the genetic algorithm gives a better “Fitness Function Curve” as a function of 
the number of iterations. The results show that the GA-ANN coupling is more accurate and efficient in estimating 
pollutant concentration values than CFD and the Gaussian model.

INTRODUCTION

Nowadays exposure to air pollution is the leading 
environmental risk factor in relation to adverse 
health impact (Liu, et al., 2017; Apte, et al., 2015).  
Particulate Matter (PM10, PM2.5 i.e. diameter less 
than 10 and 2.5 ), Nitrogen Oxide (NOX) are com-
ponents that dominate ambient air pollution associ-
ated with urban development leading to an increase 
in temperature due to industrial activities, especial-
ly thermal power plants (Lin, et al., 2018;Li, et al., 
2017; Andre, et al., 1999).  In Cameroon, regulatory 
measures have been taken to reduce the quantity of 
pollutants in the atmosphere, in particular the ones 
regulating the quality of the air in Cameroon(Li, et 

al., 2018; Konga, 2005; EPESS). This is backed by law 
n°96/12 of August 1996 relating to the management 
of the environment of the decree n°2011/2582/PM 
fixing the modalities of protection of the atmosphere. 
However, given the complaints of the population, 
the challenge remains high in areas with thermal 
power plants close to sensitive receptors, such as 
the thermal power plant of Yassa-Dibamba (heavy 
fuel oil) which emit pollutants such as Carbon Mon-
oxide (CO), Nitrogen Dioxide (NO2), Sulphur Diox-
ide (SO2) and Particulate Matter (PM10) known for 
their adverse impacts on human health (Roemer, et 
al., 2000; Middleton, et al. 2008). Achieving a target 
depends on the behavior of pollutants from these 
sources (Lemiere, et al., 2001). To meet air quality 

COMPARATIVE STUDY BETWEEN GENETIC ALGORITHM AND NEURAL  
NETWORK COUPLING AND MONITORING TOOLS ON THE DISPERSION OF  

POLLUTANTS FROM THE YASSA-DIBAMBA THERMAL POWER PLANT

A. C. GOUNE1, J. C. SEUTCHE2*, R. Y. EKANI3, B. E. ESSOMBO4, J. L. NSOUANDELE5, G. H.  
BEN-BOLIE6  

1, 2*, 4 Research and Training Unit of Physics, Energy, University of Yaoundé I- Cameroon, Yaoundé, Cameroon
3Department of Energetics Engineering, Energy, University of Douala, Research and Training Unit of Physics, Cameroon

5National Advanced Scholl of Engineering Maroua, University of Maroua Cameroon, Maroua, Cameroon
6Department of Physics, University of Yaounde I, Laboratory of Atomic, Moleculary and Nulear Physics, Yaounde,  

Cameroon

Citation:  Goune AC, Seutche JC, Ekani RY, Essombo BE, Nsouandele JL, Ben-Bolie GH. Comparative 
Study between Genetic Algorithm and Neural Network Coupling and Monitoring Tools on the Dispersion 
of Pollutants from the Yassa-Dibamba Thermal Power Plant. J Ind Pollut Control. 2023;39:002.
Copyright: © 2023 Goune AC, et al. This is an open-access article distributed under the terms of the  
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original author and source are credited.

Key words: Neural network, Genetic algorithm, Concentration, Pollutant dispersions, Prediction,  
Optimization

Received: 10-Mar-2023, Manuscript No. ICP-23-91340; Editor assigned: 14-Mar-2023, PreQC No. ICP-23-
91340 (PQ); Reviewed: 28- Mar-2023, QC No. ICP-23-91340; Revised: 03-Apr-2023, Manuscript No. ICP-23-

91340 (A); Published: 10-Apr-2023, DOI: 10.4172/0970-2083.002



GOUNE AC, ET AL.2

that effectively accelerate the convergence process. Bin 
proposed a new model for the estimation of a hazardous 
source by developing the artificial neural networks cou-
pled with the hybridization of particle swarm optimiza-
tion and simulated annealing algorithm (Bin, et al., 2018). 
Where the neural networks were used to predict the dis-
persion and the simulated annealing method was used to 
improve it to global search. The results illustrate that the 
proposed method is capable of estimating the hazardous 
sources and the wind field accurately. Rongxiao had solve 
the serious public health problem caused by pollutants 
from production industries (Rongxiao, et al., 2018). They 
also worked on the prediction of contaminant dispersion 
in order to control the emissions and used a model in-
tegrating neural networks and AERMOD system, with 
the neural network that predicted the dispersion and the 
AERMOD system that was used to bring data for predic-
tion needs, the results showed that the model was indeed 
feasible for contaminant prediction. However, the model 
still underestimates the concentrations. Juan proposed 
a Semi-Empirical Model (SEM) to improve the accuracy 
of vapor intrusion estimates by specifying pollution sce-
narios (Juan, et al., 2022). For this article we replaced the 
previous models by the Genetic Algorithm and Neural 
Network Coupling (GA-ANN), which has shown some 
qualities. The main objective of this work is to evaluate 
the coupled genetic algorithm-neural network model by 
comparing it to the operational field tool and other pre-
diction model
Location of Study Area 

The Yassa-Dibamba Thermal Power Plant is located on 
the Douala-Yaoundé heavy axis, more precisely at the 
entrance of the city of Douala and a few meters from the 
bridge over the Yassa-Dibamba between 3° 59’ 44’ N and 
9° 49’ 10’ E, in the subdivision of Douala 3rd which has a 
population of about 1,020,061 inhabitants (Seutche, et al., 
2019; Seutche, et al., 2012). The Yassa- Dibamba thermal 
power plant is built in 2008 on approximately 4 hectares 
(ha) in an overall area of approximately 7.7 ha. It has an 
installed capacity of 88 MW, with an available capacity 
of 86 MW. The thermal power plant is equipped with 
eight generators, and each generator is equipped with a 
WARTSILA 18V38 diesel engine (Fig. 1).

The 5-year meteorological data for the central region 
comes from the Douala airport station, available at the 
National Meteorological Department. We present the 

standards in sensitive receptor areas, an assessment of 
the impact of pollutant emissions must be performed. 
Two ways are possible: By direct measurement through 
site monitoring or by using an “Atmospheric Dispersion 
Prediction Model” (Pascal, et al., 2011). Considering the 
fact that monitoring sites are not accessible in our coun-
try due to our low purchasing power, the predictive 
study of pollutants in sensitive receptor areas is neces-
sarily done with dispersion modelling, which is an ef-
fective tool for behaviour of pollutants in space and time 
at the local scale (Ministry of Sustainable Development, 
the Environment, 2017). The prediction of air quality is 
very essential not only to control the variation of air qual-
ity but also to provide timely information on the quality 
of the environment (Pournazeri, et al., 2014; Yang, et al., 
2015; Corani, et al., 2016 ; Wakeel, et al., 2017; Van fan, et 
al.,2018; Yang, et al., 2018).  

Several researchers have worked on the modelling of 
air pollutant dispersion, with successful atmospheric 
dispersion simulation models including the: Gaussian, 
Lagrangian and Computational Fluid Dynamics Models 
(CFD). The Gaussian model has a simple mathematical 
expression, needs only a few parameters and is used in 
operational cases because the results are obtained quick-
ly. This is however not accurate enough (Hanna, et al., 
1982). Compared to the CFD and Lagrangian model, the 
Gaussian model is fast in computation time but less ef-
ficient in prediction results. Therefore it is necessary to 
have a fast and accurate model to improve the quality 
of the results (Bieringer, et al., 2015). In the literature, 
several works have been presented on the modelling 
of atmospheric dispersion, one of the objectives being 
to have accurate and operational results for an effective 
and rapid prediction of atmospheric dispersion of pol-
lutant. This is the case of (Florian, 2011). In his work he 
uses the “Flow’air-3D” approach based on the constitu-
tion of CFD wind data calculated on the industrial site 
and a SLAM modelling code. The couple Flow’air-3D/
SLAM, by combining accuracy and speed has allowed to 
represent in a satisfactory way the dispersion on a com-
plex case, however the model is adapted to a single site. 
Pierre used in their work Cellular Automata (CA) as rule 
of transition from one cell to Another And Neural Net-
works (ANN) for the modelling of the atmospheric dis-
persion of the methane puff (Pierre, et al., 2016). The ob-
jective of combined CA-ANN is to predict accurately and 
quickly the evolution of a puff of substance, however this 
model has limitations because we observe an increase in 
error with the number of iteration, the neural network 
used recurrent type seems to become unstable during 
modelling. In order to effectively monitor the emissions 
of hazardous gases from pollution sources, developed a 
method for dispersion prediction and source estimation 
quickly and accurately based on neural networks, par-
ticle swarm optimization and expectation maximization 
(Sihang, et al., 2018). Where neural networks are used for 
the accurate and efficient prediction of concentration dis-
tribution, particle swarm optimization and expectation 
maximization are applied to estimate source parameters 

Fig. 1 Location map of the Yassa-Dibamba thermal power plant.
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temperature from January to December of the year 2017 
to 2021 (Fig. 2). It can be seen on the figure that July, 
August, September 2020 and July, August 2021 are the 
months with the lowest temperature with T=26°C and 
February 2019 is the month with the highest temperature 
with T=32°C.

The wind rose is important for predicting the direction 
of pollutants in the atmosphere (Fig.3). The meteorolog-
ical data has been collected from the meteoblue website. 
During the study period, the dominant wind direction 
southwest. 

The curve shows the evolution of the wind speed be-
tween January 2017 and December 2021 (Fig. 4). It is 
observed that March 2019 is the month with the high-
est wind speed with V=18 km/h, May 2021 is the month 
with the lowest wind speed with V=10 km/h.

MATERIALS AND METHODS
Presentation of Genetic Algorithm Coupled to Neural 
Networks

The initial design of artificial intelligent systems was in-

troduced by (Robbins, et al., 1951). To solve this problem 
of accuracy and speed of results. Ostad-Ali-Askari used 
artificial neural networks to estimate nitrate pollution 
in groundwater in the marginal area of Zayandeh-rood 
River, Isfahan, Iran (Ostad-Ali-Askari, et al. 2017). ANN 
is a group of machine learning techniques inspired by 
biological neurons. It is a fairly accurate and fast model 
that predicts the concentration of pollutants in a complex 
area at any point in space, whose structure consists of 
several input layers, several hidden layers and an output 
layer (Fig.5). It uses the learning process that adjusts the 
parameters of the neural network layers so that the error 
on the results is as small as possible (Pierre, 2013). To 
do this, it has to select the variables and input param-
eters that affect the dispersion of the pollutants, which 
are needed for learning. An increase in the number of 
neurons in the hidden layer can lead to an increase in 
the performance of the neural networks in the accuracy 
of the results. ANNs are learned using the Matlab neural 
network toolbox.

Optimisation is an essential process in modelling the 
atmospheric dispersion of pollutants. For example, this 
is the case with the Particle Swarm Optimisation (PSO) 
algorithm which is an intelligent optimisation method, 
which guides particles to find the optimal solution, but 
this algorithm tends to fall on a local optimum. Unlike 
PSO, which is very fast in computation time, Genetic Al-
gorithms (GAs) are stochastic optimisation algorithms 
based on the mechanisms of natural selection and ge-
netics. The process of the genetic algorithm is as follows: 
One starts with a population of arbitrarily chosen initial 
potential solutions called chromosomes, and their rela-
tive performance is evaluated (Bellatreche, et al., 2005). 
Then based on this performance, a new population of po-
tential solutions is created using simple evolutionary op-
erators: selection, crossover and mutation. This cycle is 
repeated until a satisfactory solution is found (Thomas, 
et al., 2001). This method is too computationally inten-
sive, but effective in finding the global solution (Hanaa, 
et al., 2013). For this paper, the genetic algorithm is eval-
uated and used as an objective function optimisation tool 
(Fig.5). 

The GA-ANN coupling is used to optimise the predic-
tion. To calculate this prediction, we first use the natu-
ral selection mechanisms to go from one generation (k) 
to one generation (k+1) in order to find the best fitness 
function which represents for this study the concentra-

Fig. 2 Temperature of the month of the year. Note: ( ) 2017;  
( )2018; ( ) 2019; ( )2020; ( )2021.

Fig. 3 Wind rose diagram for study period of Yassa. 

Fig. 4 Wind speed between January 2017 and December 
2021. Note: ( ) 2017; ( ) 2018; ( ) 2019; ( ) 2020; ( )  
2021.

Fig. 5 Flowchart of the GA- ANN algorithm coupling.
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Table 1. Standards and air quality in Cameroon   

Substances Emission limit 
value  

Statistical definition

Sulphur diox-
ide (SO2)

50 µg/m3

125 µg/m3
Annual average(Arith-
metic average)
Daily average

nitrogen oxide 
(NO2)

200 µg/m3

40 µg/m3 0K
Hourly average(Arithme-
tic average)
Annual average

Carbon mon-
oxide (CO)

Carbon mon-
oxide (CO)

Average per 24 hours; in 
no case to be exceeded 
more than once per year

zone (O3) 120 µg/m3 8-hour average (health 
for population)

Particulate 
Matters 
(PM10)

80 µg/m3

260 µg/m3 Annual average (arithme-
tic average)
24-hour average; in no 
case should exceeded 
more than once per year. 
more than once per year

Lead (Pb) in 
suspended 
dust
suspensions

2 µg/m3 Annual average
(Arithmetic average)

Cadmium (Cd) 
in dust
suspension

1.5 ng/m3 Annual average
(arithmetic average)

Total dustfall 200 mg/m2 × 
day

Annual average
(arithmetic average)

Lead (Pb) in 
fallout
Dust

100 µg/m2 × 
day

Annual average
(arithmetic average)

Cadmium (Cd) 
in deposition 
of
Dust

2 µg/m2 × day Annual average
(arithmetic average)

Zinc (Zn) in 
deposition of
Dust

400 µg/m2 × 
day

Annual average
(arithmetic average)

Thallium in 
dust fallout
Dust

2 µg/m2 × day Annual average
(arithmetic average)

Asbestos

RESULTS AND DISCUSSION
Performance of the GA-ANN Coupling   

The evaluation of the performance of a model is done 
thanks to certain indices in particular the Mean Square 
Error (MSE), and the squared correlation coefficient (R2). 
A model is excellent when the squared error times to-
wards zero, the coefficient of determination tends to-
wards one. The Mean Square Error (MSE) is to evalu-
ate the Deep Multi-output Long-Term Memory model. 
Anastasia used the squared correlation coefficient (R2) 
to evaluate artificial neural networks using a multilayer 
perceptron, which revealed that this model with a good 

tion at the initial time, then we introduce this function, 
with the other input variables such as the advection, dif-
fusion terms and the source term in the input layer of the 
neural networks, in order to have at the output layer the 
predicted concentration. This prediction model is com-
puted based on an explicit discretization of the advection 
and diffusion terms. The flowchart of the coupling is as 
follows: 
Selection of Input Variables

The selection of input variables is necessary for the effi-
ciency of artificial neural networks, but this selection of 
variables is a difficult work as concerns neural networks 
because it reduces the complexity of the model. For this 
study, the advection-diffusion equation is used as input 
variable.

2 2

2 2X Y d
C C C C Cu v K K Q K C
t x y x y

∂ ∂ ∂ ∂ ∂
+ + = + + −

∂ ∂ ∂ ∂ ∂						      (1)

The latter which reproduces the behaviour of the pollut-
ants in the study area, where is concentration at point M 
and time t in (ug/m3 ), the diffusion coefficients in the x, 
y direction in (m2/s) and  wind speeds in the direction, 
is masse flow (kg/s), the reaction coefficient and which 
represents the disappearance term.
Meshing of the Study Area 

The prediction of the concentration of pollutant at a 
point of the domain can be obtained by first meshing the 
domain (Fig.6). More over by explicitly discretizing by fi-
nite difference the advection-diffusion equation in order 
to obtain the approximate value of the concentration in 
each time step and from the space. The discretization of 
the operators is done using the Taylor method. Either of 
the concentrations neighbouring the target concentration 
are used as input variables by the neural networks.

The equation (1) becomes:
1

, , 1, 1, , 1 , 1 1, , 1, , 1 , , 1
2 2

2 2
2 2 ( ) ( )

n n n n n n n n n n n n
i j i j i j i j i j i j i j i j i j i j i j i j

x y d

C C C C C C C C C C C C
u v K K Q K C

t x y x y

+
+ − + − + − + −− − − − + − +

+ + = + + −
∆ ∆ ∆ ∆ ∆						            (2)

Standards and Air Quality     

The standards governing air quality in Cameroon, de-
fined by Law No. 96/12 of August 1996 on the frame-
work law on environmental management of Decree No. 
2011/2582/PM laying down the modalities of protection 
of the atmosphere specified in Table 1(Eneo. 2018).  

Fig. 6 Mesh of the domain.
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However, it can be seen that the GA-ANN coupling is 
more accurate than the CFD and Gaussian model.

Evaluation of Pollutant Emissions During 5 Years

The measurements of the emissions of the pollutants 
coming from the groups in operation were carried out 
in real time, between January 2017 and December 2021. 
To do this, they were carried out for the most part in the 
machine room by placing the test rod inside the exhaust 
pipes coming from the combustion chambers of the 
groups. 

The curves respectively show the emissions of CO, NO2, 
SO2 and PM10 between January 2017 and December 2021. 
Fig. 11 shows a peak in CO emissions of E=1.8 × 106 kg 
in March 2018. (Fig.12) shows a peak in NO2 emissions 
of E=9 × 108 kg in August 2021. Fig. 13 shows a peak in 
SO2 emissions of E=1.9 × 108 kg in February 2019. Fig. 
14 shows a peak in PM10 emissions of E=4.5 × 106 kg in 
March 2019. All these different emission peaks reflect a 
high level of activity of the thermal power plant of Yassa 
during these different months. 
Evolution of Pollutants in Space and Time

In May 2021 the atmosphere is stable, the majority of 
these pollutants are inert and do not undergo chemical 
transformation on a local scale, therefore the reaction 
coefficient Kd=0; the diffusion coefficients are KY=10-5 
m/s and KZ=10-5 m/s; the wind speeds are U=0 Km/h 
and V=10 Km/h; masse flow is QS= 0.29 kg/s. During 
this period, thanks to these field data, we were able to 
obtain the concentration distribution provided by the 
micro-sensors located at an altitude of 75 m in real time 

performance in prediction (Anastasia, et al., 2011; Musy, 
et al., 1991).

The quality of this neural network model is evaluated 
on the basis of a test and training data set.  This evalua-
tion is presented by the Fig. 7. we have the vast majority 
of concentrations close to the fitting line to Y=X with a 
squared correlation coefficient R2 is about 0.88 for the test 
case and R2 is about 0.99 for the learned case which illus-
trates a fairly good performance of ANN in the test data, 
as the also shown in their work (Rongxiao, et al., 2018). 
The curve presents the root Mean Square Error (MSE); it 
is observed that the latter decrease with the number of 
iteration, and the best is about 0. 0044 (Fig. 8).  

The fitness function curve evaluates the performance 
of two algorithms which are PSO and GA (Fig. 9).  It is 
observed that the fitness function of GA and PSO grow 
almost similarly, however GA has the better fitness func-
tion from the beginning of the iteration to the end than 
the swarm per particle optimization. Bin had similar re-
sults comparing the particle swarm optimization method 
and the particle swarm optimization-simulated anneal-
ing hybridization (Bin, et al., 2018).

The validation of the GA-ANN coupling by comparing 
its results with the direct monitoring model, the CFD 
model and the Gaussian model (Fig.10). These results 
show that compared to the concentration evolution curve 
of the direct monitoring model, the GA-ANN coupling 
underestimates some concentration values with time. 

Fig. 7 ANN prediction results on learning and testing. Note: 
Training- ( ) Concentration; ( ) Fit; ( ) y=x; Test-( ) 
Concentration; ( ) Fit; ( ) y=x.

Fig. 8 The Mean Square Error (MSE) of the Artificial Neural 
Network (ANN). Note: ( ) Train; ( ) Validation; ( ) Test; 
( ) Best.

Fig. 9 The fitness function of each algorithm at each iteration. 
Note: ( ) ANN-PSO; ( ) ANN-GA.

Fig. 10 Comparison of the GA-ANN coupling with other 
models. Note: ( ) Monitoring; ( ) GA-ANN ;( ) CFD model; 
( ) Gaussian model. 
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In March 2019 the atmosphere is unstable, the majority 
of these pollutants are inert and do not undergo chemi-
cal transformation on a local scale, therefore the reaction 
coefficient Kd=0; the diffusion coefficients are KY=10-5 
m/s and KZ=10-5 m/s; the wind speeds are U=0 Km/h 
and V=18 Km/h; and masse flow is QS=0.29 kg/s During 
this period, thanks to these field data, we were able to ob-
tain the concentration distribution provided by the mi-
cro-sensors located at an altitude of 75 m in real time in 
March 2019 and the distribution curve provided by the 
GA-ANN coupling Figs.17 and 18. It can be seen that the 
concentration distribution from the monitoring is almost 
similar to that from the GA-ANN coupling.
Pollutant Dispersion by Source Flow and Wind Re-
gimes 

The curves from the monitoring and GA-ANN coupling 
show the evolution of the concentration of Carbon Mon-
oxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide 
(NO2) and Particulate Matter (PM10) in the south-west-
erly direction where the winds are stronger Figs.19-21. 
It can be seen on each of the figures that for a value of 
flow taken from the database, the evolution curve of the 
observed pollutant concentration and the GA-ANN cou-
pling is shown. It can also be seen on the different figures 
that the concentrations from the GA-ANN coupling, al-
though different from those from the monitoring in some 
areas far from the source, are approximately equal near 
the source. It can be deduced that in some areas far from 
the source, the GA-ANN coupling underestimates some 
concentration values, and close to the source this model 
gives accurate concentration values.

in May 2021 and the distribution curve provided by the 
GA-ANN coupling (Figs.15 and 16). It can be seen that 
the concentration distribution from the monitoring is al-
most similar to that from the GA-ANN coupling. 

Fig. 11 Monthly evolution of CO emission. Note: ( ) 2017;  
( ) 2018; ( ) 2019; ( ) 2020; ( ) 2021.

Fig. 12 CMonthly evolution of NO2 emission. Note: ( ) Mon-
itoring; ( ) GA-ANN ;( ) CFD model; ( ) Gaussian model. 

Fig. 13 CMonthly evolution of SO2 emission.  Note: ( ) Mon-
itoring; ( ) GA-ANN ;( ) CFD model; ( ) Gaussian model. 

Fig. 14 CMonthly evolution of PM10 emission. Note: ( ) 
Monitoring; ( ) GA-ANN ;( ) CFD model; ( ) Gaussian 
model. 

Fig. 15 Concentration distribution provided by real-time 
micro-sensors in May 2021. Note: KY=10-5; KZ=10-5; U=0; 
V=18; QS=O.29.

Fig. 16 Concentration distribution from the GA-ANN cou-
pling. Note: KY=10-5; KZ=10-5; U=0; V=18; QS=O.29.
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The curves from the monitoring and GA-ANN coupling 
show the evolution of the concentration of Carbon Mon-
oxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide 
(NO2) and Particulate Matter (PM10) in the south-western 
direction where the winds are stronger Figs.22-24. It can 
be seen on each of the figures that for a value of the veloc-
ity taken from the database, we have the evolution curve 
of the concentration of the observed pollutants and the 
GA-ANN coupling. It can also be seen on the different 
figures that the concentrations from the GA-ANN cou-
pling, although different from those from the monitor-
ing in some areas far from the source, are approximately 
equal near the source. It can be deduced that at some lo-
cations far from the source, the GA-ANN coupling un-
derestimates some concentration values, and close to the 
source this model gives accurate concentration values.

Fig. 17 Concentration distribution provided by real-time mi-
cro-sensors in March 2019. Note: KY=10-5; KZ=10-5; U=0; 
V=18; QS=O.29.

Fig. 18 Concentration distribution from the GA-ANN cou-
pling. Note: KY=10-5; KZ=10-5; U=0; V=18; QS=O.29.

Fig. 19  Evolution of pollutant concentration in space. Note:  
( ) GA-ANN; ( ) Monitoring.      

Fig. 20 Evolution of pollutant concentration in space. Note:  
( ) GA-ANN; ( ) Monitoring.      

Fig. 21 Evolution of pollutant concentration in space (Q=0.2). 
Note: ( ) GA-ANN; ( ) Monitoring. 

Fig. 22  Evolution of pollutant concentration in space. Note: 
( ) GA-ANN; ( ) Monitoring.   

Fig. 23  Evolution of pollutant concentration in space. Note:  
( ) GA-ANN; ( ) Monitoring.
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PROVIDE THE DATA AVAILABILITY STATE-
MENT

The data used to support the conclusions of this study 
are available on the zonodo accredited website from the 
link below.

•	 Goune AC, Seutche J C and Nsouandele J L. 2022. Da-
tabase of thermal power plant of YASSA-DIBAMBA 
CAMEROUN (2017-2018-2019-2020-2021) . Zenodo.
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