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INTRODUCTION 
The recent advances in CMOS scaling down 
technology enable processor manufacturers to 
fabricate more computational elements (cores) on a 
single-chip to realize high performance and reliability 
at low-cost. The implementation of multicore 
processors for an MC system will be pressurized 
by the ever-increasing demand for processing 
power, development cost, and by SWaP (Size, 
Weight, and Power) requirements. This has resulted 
in the integration of multiple tasks with varying 
criticalities onto a common platform. Regrettably, 
such consolidation may cause asymmetric inter-
task interference effects (i.e., schedule disruptions) 
between various criticality levels that in turn results 
in poor processor utilization. In order to authenticate 
the timing correctness of system components on 
the different level of rigorousness, MC systems are 
subject to certifications.

A criticality level is defined as a degree of guarantee 
required against failure. A higher criticality level 
assigned to a task reveals that the higher degree 
of guarantee is required about the correctness of 
the task (workload). For validating the correctness 
of safety domain on each criticality level, their 
workloads are subject to certification requirements 
by different Certification Authorities (CAs). To 
validate the correctness of system behavior, such 
authorities often mandate conservative assumptions 
about the worst-case execution of the applications; 
these assumptions are usually far more pessimistic 
than the assumptions that the system manufacturer 
would use during all the phases of designing, 
implementing, and testing. Nevertheless, while CA 
is only involved in validating the safety-related 
applications of the system the system architect is 
responsible for guaranteeing that the whole system 
is correct, including the non-critical parts.

ABSTRACT

Mixed-critical (MC) systems, in which different functionalities of varying criticality levels may 
consolidate on a shared embedded platform, are an active area of research in safety-related 
environments. With the proliferation of MC system, the multicore processor is becoming the 
obvious design choice in current and future safety-critical domains. The real-time scheduling 
of certifiable MC systems on a multicore platform has been recognized as a great challenging 
issue, where using conventional scheduling algorithms may cause significant under-utilization 
of the platform’s resources. In this work, we address this important dispute by proposing an 
effective optimal partitioning approach, the Criticality-aware Partitioned Algorithm (CaPA), that 
enables a limited number of migration of low-criticality workloads to improve the effectiveness 
of the schedulability by integrating the potential benefits of partitioned scheduling approaches. 
The results from extensive simulation under different situations demonstrate that CaPA always 
significantly outperforms existing MC partitioning heuristics in terms of acceptance ratios. 
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The introduction of concurrently executed 
applications with different criticalities into the 
engineering of MC subsystem bringing up new 
scheduling challenges which are not effectively 
tackled by traditional scheduling approaches. 
Recently, there is an increasing trend to propose 
novel MC scheduling approaches which are 
projected to carry out effective system utilization 
while ensuring timing guarantees and resource/
temporal separation among different workloads. In 
most proposed solutions, two criticality levels are 
defined: high and low. High-critical tasks (HCTs) are 
usually hard real-time workloads and their timing 
constraints always be satisfied even under all worst-
case circumstances proposed by the certification 
authority. Low-critical tasks (LCTs) are soft real-
time workloads because they can tolerate a certain 
amount of deadline misses. 

Task scheduling approaches on multicore can be 
classified into two categories: partitioned scheduling 
(PS) (Andersson, et al., 2001), and the global 
scheduling (GS) approach (Andersson, 2008). In the 
PS, each workload is mapped to a designated core 
(processor). Each job from the same workload will 
be performed only on that specified core. In GS, all 
instances from various workloads assembled into 
a common queue, and hence each workload can be 
performed on any core. GS can provide maximum 
utilization, while PS enables a convenient and more 
deterministic implementation, which makes it a 
better choice for hard real-time workloads. Of late, 
a novel strategy, named semi-partitioned technique 
(Anderson, et al., 2005), has been developed. In 
this strategy, most workloads are allocated to their 
designated cores (i.e., similar to PS). But, some 
workloads are permitted to decompose into many 
subtasks and each subtask is allocated across various 
available cores. These workloads can also migrate 
across various cores when needed.

In this paper, we follow the latest MC scheduling 
approach (Burns and Baruah, 2013) that attempts to 
enable a limited service level for LCTs in the critical 
mode, instead of simply rejecting them (as in most 
other works like (Baruah, et al., 2011)). We develop a 
scheduling algorithm for an MC system on multicore 
processors. Since the MC system comprises critical 
workloads, a scheduling approach that preserves the 
predictability will be essential for these workloads. 
Nevertheless, PS will have an adverse effect on the 
overall system utilization because some cores will 
have idle capacity. This problem is even worse for 
MC workloads as they have different WCET (and 
therefore different utilizations) at the various level 

of assurance. A partitioning apt for one criticality 
might not be appropriate for other levels. To enable a 
deterministic and effective partitioning, we develop a 
Criticality-aware Partitioned Scheduling Algorithm 
(CaPA). In our algorithm, HCTs are statically 
allocated to cores while LCTs are allocated with 
some migration to exploit the cores effectively. The 
admitted task set will be partitioned completely until 
it continues in a normal execution mode. However, 
during mode transition, LCTs can be transferred to 
another core when needed. Experiments reveal that 
the CaPA outperforms other PS approaches over a 
range of parameters. 

The organization of this article is as follows: Section 
II reviews some prior investigations which match 
our analysis. The sporadic task system considered 
in this paper is formally defined in Section III. Our 
proposed Criticality-aware Partitioned Scheduling 
Algorithm and the schedulability tests are given in 
Section IV. An evaluation is presented in Section V. 
We conclude this work in Section VI.

RELATED WORK
Numerous MC scheduling approaches in the context 
of multicore have been developed recently. One of 
the most commonly used MC scheduling approaches 
is the Adaptive Mixed Criticality (AMC) strategy 
developed by (Baruah, et al., 2011). In this model, all 
LCTs are overloaded in the critical mode (C-Mode). 
While this model provides timeliness guarantees 
for HCTs, no assurances are provided for LCTs in 
C-Mode, which is not acceptable for several real-
time scenarios. For instance, in the control system 
of an unmanned aerial vehicle, sporadic delays can 
lead unacceptable performance degradation and 
uncertainty in the system behavior (Yip, et al., 2014). 
To relax the assumptions of AMC and ensure certain 
service level to LCTs, (Burns and Baruah, 2014) 
develop a model with an increasing period of LCTs 
in C-Mode, similar to Elastic Mixed-Criticality task 
model (E-MC) (Buttazzo, et al., 1998). 

Su et al. take E-MC into account, and investigate 
Earliest Deadline First (EDF) based scheduling for 
single-core and multicore systems (Su and Zhu, 
2013). In our work, we consider E-MC by enabling 
a limited number of LCTs to execute in C-Mode. In 
this work, we concentrate on fixed priority schemes, 
therefore, the E-MC system is used for static-priority 
scheduling, rather than EDF approach as in (Su and 
Zhu, 2013; Su, et al., 2013). One of the first works 
on the multicore scheduling of the MC system is 
suggested by Mollison et al. The authors implement 
five different criticality levels from A to E using 
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different scheduling policies (such as partitioned 
EDF, global EDF, cyclic executive and global best 
effort). A two level compositional technique is 
employed for scheduling. This algorithm also 
introduced a certain limitation on workloads such 
as demanding all inter-task arrival time of level B 
workloads be integer multiples of the level-A hyper 
period (Mollison, et al., 2010). 

Baruah et al. evaluate PS and GS approach for an 
MC system and determined that PS is more efficient 
(Baruah, et al., 2014). This is because the selected 
utilization limits in schedulability analysis for GS 
are more conservative whereas PS can exploit more 
precise methods for schedulability tests (Baruah, 
et al., 2014). Furthermore, PS is implemented in 
industrial standards for MC scheduling (Rodriguez, 
et al., 2013). Therefore, in this work we concentrate 
on PS. 

Gu et al. develop a PS approach called Mixed-
criticality Partitioning with Virtual Deadlines 
(MPVD) (Gu, et al., 2014). In MPVD, HCTs are 
mapped by means of the Worst-Fit approach then 
LCTs are mapped by means of First-Fit. Workloads 
are ordered by utilization at their criticalities. 
Rodriguez et al. propose an analogous approach 
trying other combinations of mapping approaches 
(Best-Fit (BF), Worst-Fit (WF), First-Fit (FF) and 
Next-Fit (NF) (Rodriguez, et al., 2013). The authors 
conclude that an approach that allocates HCTs 
first using WF then LCTs using FF, both ordered 
by decreasing utilization achieves higher success 
rate. (Kelly, et al., 2011) compare different mapping 
heuristics for PS of the mixed-criticality system. 
Workloads are sorted by non-increasing utilization 
or by non-increasing criticality. They determined 
that FF and BF with decreasing criticality return the 
best performance. 

PROBLEM DEFINITION AND NOTATION
In this section, we consider a set of n sovereign MC 
sporadic tasks τ = {τ1

£, τ2
£,...,τn

£}, and a processor 
Ψ with λ cores Ψ = {Ψ1,Ψ2,...,Ψλ}. Each workload 
τi potentially releases an infinite sequence of MC 
instances, with consecutive instances being arrived 
at least Ti time units apart. Each sporadic task is 
represented as a 5-tuple: 

τi
£ = (£i, Ti, Di, Ei

2, Ei
1)

where

• £i ∈ {1,2} represents the criticality level of task τi. 

• Ti ∈ R+ is the period (minimum arrival interval)

• Di ∈ R+ is the relative deadline. For an implicit 
deadline sporadic tasks, Di = Ti.

• Ei
2 ∈ R+ is the estimated Worst-Case Execution 

Time (WCET) of workload τi
£ in critical mode.

• Ei
1 ∈ R+ is the estimated WCET of task τi

£ in normal 
mode. 

For LCT, Ei
1= Ei

2 and for HCT Ei
1 < Ei

2. This is because 
the Ei

2 is very pessimistic than Ei
1 (to ensure timeliness 

guarantee).

OPERATING MODES OF THE SYSTEM
In a sporadic task model, each workload will have 
definite values of period Ti and criticality £i. But, 
its completion deadline Ei is indeterminate; it is 
only discovered by executing an instance from the 
workload until it signals completion. If all workloads 
signal completion without overrunning Ei

1, the 
system has exhibited its normal mode. On the other 
hand, if any workload signals completion after 
overrunning Ei

1 but not exceeding Ei
2, then it has 

exhibited its critical mode behavior. If any workload 
executes for more than Ei

2, then the system has 
revealed erroneous behavior

Without loss of generality, we believe that all the 
cores enter into critical mode simultaneously and 
all incomplete instances from LCTs are canceled 
during the mode transition. The rationale behind this 
assumption is based on the fact that it is not essential 
to assure LCTs a high-level guarantee once a system 
exhibits its critical behavior. Task migration can be 
achieved as soon as the criticality switch commences. 
Once all the incomplete instances of HCT are finished 
execution, the system returns to normal mode while 
maintaining the schedulability of all necessary tasks.

UTILIZATION
Utilization denotes the overall fraction of an 
execution time demand of a system. It is used only to 
designate real-time recurrent (periodic or sporadic) 
workloads. Given a set of MC sporadic workload 
τi, the normal utilization of low-criticality task τi

1 in 
N-Mode is defined as: 

)1()(
1

11

T
EU

i

i
ii =τ                                                                  (1) 

The critical utilization of high-criticality task τi
2

 is 
defined as 

)2()(
2

22

T
EU

i

i
ii =τ                     (2)

MC-SCHEDULABILITY
A task τi

£ is MC-schedulable if and only if each 
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instance from τi
£ is MC-schedulable. A set of MC 

sporadic workload τi is considered to be temporally 
correct (schedulable) by an algorithm ξ if and only 
if ξ will consistently satisfy all deadline constraints 
of τi to the certain degree of guarantee. The task set 
τi is deemed feasible if there exist some ξ such that τi 
is schedulable by ξ. The MC schedulability problem 
is known to be NP-hard. This rigorous result holds 
even in the extremely worst-case scenario such as 
all instances of the task have equal periods, and 
confidence level of each job is either 1 (low) or 2 
(high).

CRITICALITY-AWARE PARTITIONED MC 
SCHEDULING
This paper concentrates on the problem of effective 
static-priority scheduling in an MC tasks on a 
multicore processor. An MC system behaves 
differently based on their execution mode. As stated 
above, the parameters of an admitted workload 
vary from one mode to another. This variation is 
not necessarily uniform between all cores since 
it hinges on the scheduling constraints of the 
workloads assigned to the core and the technique 
implemented by CA to estimate their WCET. So, 
the idle computational power existing for LCTs 
across cores does not necessarily modify by the same 
ratio when a criticality switch happens. To date, 
partitioning in an MC system is achieved such that 
the timing constraints of HCTs in C-Mode and the 
timing constraints of the LCTs in N-Mode are met 
simultaneously. This can be excessively conservative.

Many task-to-core mapping algorithms have 
been employed to the multicore scheduling of 
conventional real-time workloads and of late applied 
for MC applications (Kelly, et al., 2011). Some of 
the most widely used approaches are BF, WF and 
FF. To increase the performance of partitioning 
heuristics when used to MC applications, we 
propose to exploit our Criticality-aware Partitioned 
Scheduling. Using this algorithm, a set of task is 
completely partitioned under the stable execution 
modes (N-Mode and C-Mode). Nonetheless, the 
bin-packing approaches used to map HCTs and 
LCTs are not necessarily the same. An LCT τi

1 in the 
system may have two dedicated cores Ψ1 and Ψ2. 
This technique circumvents the limitations of GS, 
especially, the necessity to exploit the conservative 
limits of GS, while being able to execute more tasks 
than PS as illustrated by the experiments in the 
following section. 

In the context of operating mode, while the system 
remains to perform in a specified mode, all workloads 

are performed on their dedicated cores. But, when 
a criticality switch happens, workloads may 
transfer to other available cores. Task migration is 
achieved dynamically to provide effective utilization 
of resources in C-Mode. In order to maintain 
deterministic behavior of HCTs, they are not allowed 
to migrate. Only LCTs can transfer such that they are 
assured to receive a minimum execution level. 

ILLUSTRATIVE EXAMPLE 
In order to exemplify the tenet of our Criticality-
aware Partitioned algorithm, we consider a sporadic 
task set comprising of 4 workloads to be scheduled 
onto two cores {Ψ1,Ψ2} as depicted in Table 1. As we 
consider implicit-deadline workloads, the deadline 
of the workload is equal to its corresponding inter-
task arrival time. Tasks are scheduled under Rate-
Monotonic scheduling approach. In the case of 
workloads with equal inter-task arrival time, the 
workload with the lower index has greater priority. 
Without using PS algorithm, it is not feasible to 
schedule these workloads on the given cores.

In normal mode, tasks τ1
2 and τ2

1 are allocated to core 
Ψ1, while τ3

1 and τ4
2 to Ψ2. In N-Mode, the cumulative 

utilization of task τ1
2 and τ2

1 is U1
2 + U2

1 = 0.30 + 0.15 = 
0.45 ≤ 1 and the cumulative utilization of task τ3

1 and 
τ4

2 is U3
1+U4

2 =0.25+0.30 = 0.55 ≤ 1. Hence, these tasks 
are scheduled across two cores without violating 
their timing correctness. In C-Mode, the utilization 
of task τ1

2 is 0.90; hence τ1
2 cannot be scheduled 

to a particular core with any other task. But, the 
cumulative utilization of the other three workloads 
would be U2

1 + U3
1 + U4

2 = 0.15+0.25+0.60 = 1; and 
hence these three tasks are schedulable on a common 
core under C-mode. With CaPA, it is possible to 
assure the temporal correctness of the system by 
migrating tasks. In C-Mode, τ2

1
 transfers to Ψ2 the 

other workloads continue on their designated core. 
(Fig. 1) illustrates the run-time execution behavior of 
this task allocation.

• N-Mode (in an interval [0,26])

The system starts its execution in N-Mode. In this 
mode, tasks τ1

2 and τ2
1 are allocated to core Ψ1, while 

τ3
1 and τ4

2 to Ψ2. At time t = 26, τ1
2 executes for more 

Task £ Ei
1 Ei

2 Ti Ui
1 Ui

2

τ1
2 2 6 18 20 0.30 0.90

τ2
1 1 6 6 40 0.15 0.15

τ3
1 1 10 10 40 0.25 0.25

τ4
2 2 6 12 20 0.30 0.60

Table 1. A dual-criticality task set
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than its Ei
1 (i.e., 6 time units) and hence the system 

enters into C-Mode. At this time, τ2
1 starts to transfer 

to Ψ2. 

• Mode change (in an interval [26,38]) 

All the active LCTs (i.e., τ3
1 in our example) are 

discarded and no further tasks are permitted to 
perform for the full mode changing period. 

• C-Mode (in an interval ([38,80]:

At t = 38, all incomplete instances finish and the 
system enters into C-Mode and τ2

1 is executing on Ψ2.

The Criticality-aware Partitioned algorithm (CaPA) 
(Algorithm 1) is developed to achieve efficient 
partitioning. We use two different partition 
techniques: NORMAL-partition is implemented in 
N-Mode and CRITICAL-partition for C-Mode. Our 
CaPA scheme divided into two parts: partitioning 
and optimization. 

PARTITIONING
CaPA introduces two partitioning strategies (i.e., 
NORMAL-partition and CRITICAL-partition). This 
is realized in three steps: first allocate the HCTs, 
followed by LCTs in C-Mode, and finally LCTs in 
N-mode.

For each step, a task-to-core allocation policy is 
used to allocate tasks. Task-to-core allocation () in 
Algorithm 2 is used for allocating workloads in a 
particular mode based on the packing criteria Pack 
such as WF or BF. For the partition in C-Mode (i.e., 
Mode = 2), workloads are first ordered by non-
increasing critical utilization and cores are ordered 
according to Pack. Then, workloads are allocated 
serially. Before a workload τi is allocated to a core, 
the schedulability of the core needs to be tested. It 
is only essential to test the schedulability in C-Mode 
by means of SCHED-CRITICAL (); for the partition 
in N-Mode (i.e., Mode = 1), workloads are ordered 
by decreasing Ui

1 and allocated serially after testing 
the schedulability of the core by means of SCHED-
NORMAL-and- M_CHANGE ().

The algorithm CaPA can be implemented with any 

task-to-core allocation technique. By varying the task 
ordering principles, the packing criteria for HCTs 
(Pack 1 in Algorithm 1) and for LCTs (Pack  2), various 
algorithms can be developed. Simulation results 
revealed that using WF for partitioning HCTs yields 
the best results, as it allocates the HCTs across all 
the available cores uniformly leaving more freedom 
to partition the LCTs across all available cores. For 
LCTs, it is evident that the implementation of FF 
realizes higher schedulability for these workloads.

Algorithm 1:

 CaPA (τ, Ψ, Pack1, Pack2) 

1: [τ2, τ1] = Split (τ) 

2: Step: 1.a: allocate HCTs ►Partitioning

3: If Task-to-core allocation (τ2,Ψ,Pack1,2)==FALSE 
then 

4: Return FAILURE 

5: Endif 

6: Step 1.b: allocate LCTs in C-Mode 

7: If Task-to-core allocation (τ1,Ψ,Pack1,2)==FALSE 
then 

8: Return FAILURE

9: Endif 

10: CRITICAL-partition = current partition 

11: Step 1.c: allocate LCTs in N-Mode 

12: DeAllocateTasks (τ1) 

13: If Task-to-core allocation (τ1,Ψ,Pack2,1)==FALSE 
then 

14: Return FAILURE 

15: Endif 

16: Step 2: optimizeallocation  ► Optimization 

17: MIG_TASK = tasks τi with Ψi
1 != Ψi

2 ordered by 
decreasing Ui

1 

18: For all τi ∈ MIG_TASK do 

19: If SCHED-NORMAL-and-M_CHANGE (τi,Ψi
2) 

then 

20: Allocate (τi, Ψi
2) 

21: MIG_TASK.update () 

22: Endif 

23: Endfor 

24: For all τi, τj ∈ MIG_TASK do 

25: If Ψi
2== Ψj

1 then 

 

 

Fig. 1 Example system execution trace.
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26: If SCHED-NORMAL-and-M_CHANGE  
(τi, Ψi

2−τj) && 

 SCHED-NORMAL-and-M_CHANGE (τj,Ψi
1−τi) 

then

27: Swap (τi, τj) 

28: MIG_TASK.update () 

29: Endif 

30: Endif 

31: End for 

32: NORMAL-partition = current partition 

33: Return SUCCESS

OPTIMIZATION
This phase optimizes the partitioning achieved in 
the previous phase and decreases the switching 
overhead. This is accomplished by switching the 
allocation of some LCTs in N-Mode. The workloads 
that transfer during switching mode are put in the list 
MIG_TASK and arranged by non-increasing order 
of Ui

1. Then, for each workload τi in MIG_TASK, 
two attempts are made to transfer the workload: (i) 
reschedule the workload in N-Mode to the same core 
Ψi

2 to which it is allocated in the C-Mode. If this fails, 
one more effort is made to exchange workload τi 
with another transferring workload τj from Ψi

2 such 
that Ψj

1 = Ψi
2 but Ψj

2 ≠ Ψj
1. To check the schedulability 

of the system, we use two functions: (i) SCHED-
CRITICAL () used in the CRITICAL-partition; and 
(ii) SCHED-NORMAL-and-M_CHANGE () used in 
the NORMAL-partition.

Algorithm 2

 Task-to-core allocation (τ, Ψ, Pack, Mode) 

1: Sort (τ, DU) 

2: Sort (Ψ, Pack)

3: For each τi ∈ τ do

4: For each Ψj ∈ Ψ do 

5: If Mode == 2 then 

6: Sched = SCHED-CRITICAL (τi, Ψj) 

7: Else 

8: Sched=SCHED-NORMAL-and- M_CHANGE 
(τi,Ψj) 

9: Endif 

10: If sched then 

11: Allocate (τi, Ψj) 

12: Sort (Ψ, Pack) 

13: NextWorkload 

14: Endif 

15: Endfor 

16: If τi not mapped to any core then 

17: Return FAILURE 

18: Endif 

19: Endfor 

20: Return SUCCESS

Function for NORMAL-partition

As we know that instances from LCTs are discarded 
during mode transition, the method used for 
schedulability analysis in AMC-rtb algorithm 
(Baruah, et al., 2011; Bini and Buttazzo, 2005) can 
be reclaimed for our work. The function, SCHED-
NORMAL-and-M_CHANGE () is implemented 
to test the schedulability in normal execution and 
switching mode. 

Function for CRITICAL-partition

In this partition, the set of workload mapped to the 
core during CRITICAL-partition is considered. All 
the workloads (HCTs and LCTs) are tested using 
their C-Mode constraints using SCHED-CRITICAL 
(). The Worst Case Response Time (WCRT) for 
workload τi in CRITICAL-partition is calculated as:

 
2

2
2 2

( )

i
i i

j h i j

RR E
T∈

 
= +  

  
∑       (3)

where h2 (i) indicates the set of workloads which 
have greater priority than the active workload on 
the same core. We now proceed to evaluate our 
CaPA algorithm for the multicore processor. First, 
we evaluate various bin-packing approaches and 
assess their performance by implementing our 
CaPA on them. We will use the symbolization a/b to 
designate various algorithms where ‘a’ is the task-to-
core allocation approach used for HCTs and ‘b’ the 
allocation approach for LCTs, where a, b ∈ {WF, FF, 
BF}. For instance, WF/BF is the algorithm developed 
by implementing WF to HCTs and BF to LCTs. 

EXPERIMENTAL EVALUATION
For our experiments, the period the workloads 
are arbitrarily selected from the set {10, 20, 50, 
100, 200, 400, 500, 1000} ms. The Cfact for HCTs 
defining the ratio between Ei

2 and Ei
1 was arbitrarily 

chosen from 1 to 4. Deadlines were implicit. The 
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utilization bounds of workloads were fixed using 
the UUnifast (Bini and Buttazzo, 2005) method with 
the low (high)-utilization capped at 0.5 (0.85) per 
workload. The UUnifast creates workloads such 
that their cumulative Ui

1 is equal to 85% of the total 
processing capacity of the system. The parameter Ui

2 

is calculated from other arbitrary factors (Cfact and 
Ti). Any task set with Ui

2 > Uλ (where Uλ is the total 
processing capacity of the system) was dropped. 
The parameter Ei

1 of the workload is then obtained 
from the inter-task arrival time (Ti) and Ui

1. The 
completion deadline Ei

2 is derived from Ei
1 and Cfact. 

Unless otherwise stated, 50% of the workloads in the 
system are HCTs. Furthermore, each data point in 
the graphs is drawn from 200 workloads.

In our first experiment, we evaluate the bin-packing 
heuristics before implementing CaPA, which consist 
of 9 mixtures of approaches (i.e., WF/WF, WF/BF, 
WF/FF, BF/WF, BF/BF, BF/FF, FF/WF, FF/BF, FF/
FF). Moreover, we also report the throughputs of 
the original task-to-core allocation strategies, which 
order workloads by decreasing utilization (DU) thus 
neglecting their level of importance. (Fig. 2) exhibits 
the ratio of schedulable tasks (acceptance ratio) 
against the normalized Ui

1. For this experiment, 50 
tasks (25 LCT, 25 HCT) were scheduled on 4 cores. 

The results in (Fig. 2) show that the mapping 
techniques that allocate HCTs using WF policy 
provide considerably better performance than the 
remaining ones. Among these, using FF for LCTs 
provides the best acceptance ratio. Interestingly, this 
achieves a similar result as prior work in (Rodriguez, 
et al., 2013) for EDF-VD algorithm. The rest of this 
section focuses on WF/FF heuristic owing to its 
superior performance and exhibits substantial 
enhancements in the context of implementing the 
CaPA to it (WF/FF-CaPA). Exploiting CaPA on 
other approaches makes identical enhancements. 
But, those results are not presented in this paper by 
reason of space constraints. 

Workload is then obtained from the inter-task 
arrival time (Ti) and Ui

1. The completion deadline 
Ei

2 is derived from Ei
1 and Cfact. Unless otherwise 

stated, 50% of the workloads in the system are HCTs. 
Furthermore, each data point in the graphs is drawn 
from 200 workloads.

In our first experiment, we evaluate the bin-packing 
heuristics before implementing CaPA, which consist 
of 9 mixtures of approaches (i.e., WF/WF, WF/BF, 
WF/FF, BF/WF, BF/BF, BF/FF, FF/WF, FF/BF, FF/
FF). Moreover, we also report the throughputs of 
the original task-to-core allocation strategies, which 

order workloads by decreasing utilization (DU) thus 
neglecting their level of importance. (Fig. 2) exhibits 
the ratio of schedulable tasks (acceptance ratio) 
against the normalized Ui

1. For this experiment, 50 
tasks (25 LCT, 25 HCT) were scheduled on 4 cores. 

The results in (Fig. 2) show that the mapping 
techniques that allocate HCTs using WF policy 
provide considerably better performance than the 
remaining ones. Among these, using FF for LCTs 
provides the best acceptance ratio. Interestingly, this 
achieves a similar result as prior work in (Rodriguez, 
et al., 2013) for EDF-VD algorithm. The rest of this 
section focuses on WF/FF heuristic owing to its 
superior performance and exhibits substantial 
enhancements in the context of implementing the 
CaPA to it (WF/FF-CaPA). Exploiting CaPA on 
other approaches makes identical enhancements. 
But, those results are not presented in this paper by 
reason of space constraints.

 (Fig. 3) illustrates the enhancement gained by 
implementing CaPA on the WF/FF heuristic. 
This combination, WF/FF-CaPA algorithm (i.e., 
Algorithm 1 with Pack1=WF and Pack2 = FF) 
dispatches more tasks than the traditional WF/
FF heuristic, particularly at higher utilizations. At 
utilizations of 0.8 and higher the WF/FF-CaPA 
improves the acceptance ratio of WF/FF by 23% 
increasing at utilizations of 0.9 and beyond to 31%. 
To analyze the predictability of CaPA at different 
parameters, the basic scheduling factors were 
varied in the following simulations. The normalized 
utilization was varied by changing the number of 
the workload from 10 to 200 while preserving the 
parameter Ui

1 = 0.75 per core.

 (Fig. 4) illustrates the acceptance ratio of tasks against 
the total number of admitted tasks (a higher number 
of tasks implies lower average task utilizations). A 
close observation of the (Fig. 4) shows that WF/FF-
CaPA increases the acceptance ratio of WF/FF by an 

 

 

 

Fig. 2 Acceptance ratio at different Ui1 for various 
heuristics (before applying CaPA).
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average of 24%. This ratio is increased for systems 
with a large number of workloads.

 (Fig. 5) shows the impact of Prob (τ2) on CaPA 
schedulability. Here, the parameter Prob (τ2) 
represents the probability of a task to be a high-
criticality task. The Prob (τ2) is varied in the range 
[0.1 – 0.8] while preserving all other scheduling 
factors constant. For scheduling scenario with Prob 
(τ2) ≤ 0.3, almost all tasks are schedulable. As the 
Prob (τ2) increases, the acceptance ratios of both 
approaches reduce but WF/FF-CaPA performs 
better. The implementation of our algorithm in WF/
FF packing heuristic (i.e., WF/FF-CaPA) schedules 
73.3% of tasks whereas WF/FF schedules 54.6%.

CONCLUSION
There has been a growing research interest in the 
scheduling of MC workloads in multicore platforms. 
We investigate the static-priority partitioned 
scheduling on safety-critical multicore platforms 
in this document. We evaluate the performance of 
different task-to-core mapping approaches when 
applied to sporadic MC tasks. We also develop a 
Criticality-aware Partitioned Algorithm for multicore 
processors. Our proposed algorithm combines 
a partitioned scheduling approach with various 
mapping strategies to enable better utilization of 
system resources. CaPA is easily implemented with 
any task mapping heuristic and can always exhibit 
noticeable schedulability improvements on HCTs 
while delivering a certain level of timing assurances 
to LCTs. Future work includes extending CaPA to 
consider common platforms and run-time overheads 
(e.g., context switches and migrations).

REFERENCES
Anderson, J.H., Bud, V. and Devi, U.C. (2005). 

An EDF-based scheduling algorithm for 
multiprocessor soft real-time systems. In: 
Proceedings of EUROMICRO Conference on Real-
Time Systems (ECRTS). 199–208.

Andersson, B. (2008). Global static-priority 
preemptive multiprocessor scheduling with 
utilization bound 38%. In: Proceedings of 
ACM International Conference on Principles of 
Distributed Systems (OPODIS).5401 : 73-88.

Andersson, B., Baruah, S. and Jonsson, J. (2001). 
Static-priority scheduling on multiprocessors. 
In: Proceedings of 22nd Real-Time Systems 
Symposium (RTSS). IEEE.

Baruah, S., Burns, A. and Davis, R.I. (2011). Response-
time analysis for mixed criticality systems. 
In: Proceedings of 32nd Real-Time Systems 
Symposium. 34-43.

Baruah, S., Chattopadhyay, B., Li, H. and Shin, 
I. (2014). Mixed-criticality scheduling on 
multiprocessors. Real-Time Systems. 50 : 142-177.

Bini, E. and Buttazzo, G. (2005). Measuring the 
performance of schedulability tests. Real-Time 
Systems. 30 : 129-154.

Burns, A. and Baruah, S. (2013). Towards a more 
practical model for mixed criticality systems. In: 
Proceedings of 1st Workshop on Mixed-Criticality 
Systems (collocated with RTSS).

Buttazzo, G.C., Lipari, G. and Abeni, L. (1998). 
Elastic task model for adaptive rate control. In: 
Proceedings of 19th IEEE Real-Time Systems 
Symposium. 286-295.

 
Fig. 4 Enhancement of the acceptance ratio for varying 
number of workloads.

 
Fig. 5 Enhancement on acceptance ratio at different 
Prob (τ2).

Fig. 3 Enhancement of the acceptance ratio at different Ui
1.



1753

CRITICALITY-AWARE PARTITIONED TASK SCHEDULING WITH LIMITED MIGRATORY ON 
MULTICORE PLATFORMS

Gu, C., Guan, N., Deng, Q. and Yi, W. (2014). 
Partitioned mixed-criticality scheduling on 
multiprocessor platforms. In: Proceedings 
of   Design. Automation and Test in Europe 
Conference and Exhibition (DATE).

Kelly, O.R., Aydin, H. and Zhao, B. (2011). On 
partitioned scheduling of fixed priority mixed-
criticality task sets.  In: Proceedings of 10th 
International Conference on Trust, Security and 
Privacy in Computing and Communications. 
1051-1059.

Mollison, MS., Erickson, J.H., Anderson, B., Baruah, 
S K. and Scoredos, JA. (2010). Mixed-criticality 
real-time scheduling for multicore systems. In: 
Proceedings of 10th International Conference on 
Computer and Information Technology (CIT). 
1864-1871.

Rodriguez, P., George, L. and Goossens, J. (2013). 
Multi-criteria evaluation of partitioned EDF-

VD for mixed criticality systems upon identical 
processors. In: Workshop on Mixed Criticality 
Systems.

Su, H. and Zhu, D. (2013). An elastic mixed-criticality 
task model and its scheduling algorithm. In: 
Proceedings of Design. Automation and Test in 
Europe Conference & Exhibition (DATE).

Su, H., Zhu, D. and Moss´e, D. (2013). Scheduling 
algorithms for elastic mixed criticality tasks 
in multicore systems.  In: Proceedings of 19th 
International Conference on Embedded and Real-
Time Computing Systems and Applications. 352-
357.

Yip, E., Kuo, M., Broman, D. and Roop, P. (2014). 
Relaxing the synchronous approach for mixed-
criticality systems. In: Proceedings of 20th IEEE 
Real-Time and Embedded Technology and 
Application Symposium. 89-100.


