
CRITICALITY-AWARE PARTITIONED TASK SCHEDULING WITH LIMITED
MIGRATORY ON MULTICORE PLATFORMS

NAGALAKSHMI K1* AND GOMATHI N1

1Department of Information Technology E.G.S. Pillay Engineering College Nagapattinam, Tamilnadu, India.

2Department of Computer Science and Engineering Vel Tech Dr.RR & Dr.SR University, Chennai, Tamilnadu,
India.

(Received 25 May, 2017; accepted 22 December, 2017)

Key words: Mixed-criticality, Multicore processor, Task scheduling, Schedulability, Sporadic task

Jr. of Industrial Pollution Control 33(2)(2017) pp 1745-1753
www.icontrolpollution.com
Research Article

*Corresponding authors email: nagalaxmi@gmail.com; gomathin@veltechuniv.edu.in

INTRODUCTION
The recent advances in CMOS scaling down
technology enable processor manufacturers to
fabricate more computational elements (cores) on a
single-chip to realize high performance and reliability
at low-cost. The implementation of multicore
processors for an MC system will be pressurized
by the ever-increasing demand for processing
power, development cost, and by SWaP (Size,
Weight, and Power) requirements. This has resulted
in the integration of multiple tasks with varying
criticalities onto a common platform. Regrettably,
such consolidation may cause asymmetric inter-
task interference effects (i.e., schedule disruptions)
between various criticality levels that in turn results
in poor processor utilization. In order to authenticate
the timing correctness of system components on
the different level of rigorousness, MC systems are
subject to certifications.

A criticality level is defined as a degree of guarantee
required against failure. A higher criticality level
assigned to a task reveals that the higher degree
of guarantee is required about the correctness of
the task (workload). For validating the correctness
of safety domain on each criticality level, their
workloads are subject to certification requirements
by different Certification Authorities (CAs). To
validate the correctness of system behavior, such
authorities often mandate conservative assumptions
about the worst-case execution of the applications;
these assumptions are usually far more pessimistic
than the assumptions that the system manufacturer
would use during all the phases of designing,
implementing, and testing. Nevertheless, while CA
is only involved in validating the safety-related
applications of the system the system architect is
responsible for guaranteeing that the whole system
is correct, including the non-critical parts.

ABSTRACT

Mixed-critical (MC) systems, in which different functionalities of varying criticality levels may
consolidate on a shared embedded platform, are an active area of research in safety-related
environments. With the proliferation of MC system, the multicore processor is becoming the
obvious design choice in current and future safety-critical domains. The real-time scheduling
of certifiable MC systems on a multicore platform has been recognized as a great challenging
issue, where using conventional scheduling algorithms may cause significant under-utilization
of the platform’s resources. In this work, we address this important dispute by proposing an
effective optimal partitioning approach, the Criticality-aware Partitioned Algorithm (CaPA), that
enables a limited number of migration of low-criticality workloads to improve the effectiveness
of the schedulability by integrating the potential benefits of partitioned scheduling approaches.
The results from extensive simulation under different situations demonstrate that CaPA always
significantly outperforms existing MC partitioning heuristics in terms of acceptance ratios.

1746 NAGALAKSHMI ET AL.

The introduction of concurrently executed
applications with different criticalities into the
engineering of MC subsystem bringing up new
scheduling challenges which are not effectively
tackled by traditional scheduling approaches.
Recently, there is an increasing trend to propose
novel MC scheduling approaches which are
projected to carry out effective system utilization
while ensuring timing guarantees and resource/
temporal separation among different workloads. In
most proposed solutions, two criticality levels are
defined: high and low. High-critical tasks (HCTs) are
usually hard real-time workloads and their timing
constraints always be satisfied even under all worst-
case circumstances proposed by the certification
authority. Low-critical tasks (LCTs) are soft real-
time workloads because they can tolerate a certain
amount of deadline misses.

Task scheduling approaches on multicore can be
classified into two categories: partitioned scheduling
(PS) (Andersson, et al., 2001), and the global
scheduling (GS) approach (Andersson, 2008). In the
PS, each workload is mapped to a designated core
(processor). Each job from the same workload will
be performed only on that specified core. In GS, all
instances from various workloads assembled into
a common queue, and hence each workload can be
performed on any core. GS can provide maximum
utilization, while PS enables a convenient and more
deterministic implementation, which makes it a
better choice for hard real-time workloads. Of late,
a novel strategy, named semi-partitioned technique
(Anderson, et al., 2005), has been developed. In
this strategy, most workloads are allocated to their
designated cores (i.e., similar to PS). But, some
workloads are permitted to decompose into many
subtasks and each subtask is allocated across various
available cores. These workloads can also migrate
across various cores when needed.

In this paper, we follow the latest MC scheduling
approach (Burns and Baruah, 2013) that attempts to
enable a limited service level for LCTs in the critical
mode, instead of simply rejecting them (as in most
other works like (Baruah, et al., 2011)). We develop a
scheduling algorithm for an MC system on multicore
processors. Since the MC system comprises critical
workloads, a scheduling approach that preserves the
predictability will be essential for these workloads.
Nevertheless, PS will have an adverse effect on the
overall system utilization because some cores will
have idle capacity. This problem is even worse for
MC workloads as they have different WCET (and
therefore different utilizations) at the various level

of assurance. A partitioning apt for one criticality
might not be appropriate for other levels. To enable a
deterministic and effective partitioning, we develop a
Criticality-aware Partitioned Scheduling Algorithm
(CaPA). In our algorithm, HCTs are statically
allocated to cores while LCTs are allocated with
some migration to exploit the cores effectively. The
admitted task set will be partitioned completely until
it continues in a normal execution mode. However,
during mode transition, LCTs can be transferred to
another core when needed. Experiments reveal that
the CaPA outperforms other PS approaches over a
range of parameters.

The organization of this article is as follows: Section
II reviews some prior investigations which match
our analysis. The sporadic task system considered
in this paper is formally defined in Section III. Our
proposed Criticality-aware Partitioned Scheduling
Algorithm and the schedulability tests are given in
Section IV. An evaluation is presented in Section V.
We conclude this work in Section VI.

RELATED WORK
Numerous MC scheduling approaches in the context
of multicore have been developed recently. One of
the most commonly used MC scheduling approaches
is the Adaptive Mixed Criticality (AMC) strategy
developed by (Baruah, et al., 2011). In this model, all
LCTs are overloaded in the critical mode (C-Mode).
While this model provides timeliness guarantees
for HCTs, no assurances are provided for LCTs in
C-Mode, which is not acceptable for several real-
time scenarios. For instance, in the control system
of an unmanned aerial vehicle, sporadic delays can
lead unacceptable performance degradation and
uncertainty in the system behavior (Yip, et al., 2014).
To relax the assumptions of AMC and ensure certain
service level to LCTs, (Burns and Baruah, 2014)
develop a model with an increasing period of LCTs
in C-Mode, similar to Elastic Mixed-Criticality task
model (E-MC) (Buttazzo, et al., 1998).

Su et al. take E-MC into account, and investigate
Earliest Deadline First (EDF) based scheduling for
single-core and multicore systems (Su and Zhu,
2013). In our work, we consider E-MC by enabling
a limited number of LCTs to execute in C-Mode. In
this work, we concentrate on fixed priority schemes,
therefore, the E-MC system is used for static-priority
scheduling, rather than EDF approach as in (Su and
Zhu, 2013; Su, et al., 2013). One of the first works
on the multicore scheduling of the MC system is
suggested by Mollison et al. The authors implement
five different criticality levels from A to E using

1747

CRITICALITY-AWARE PARTITIONED TASK SCHEDULING WITH LIMITED MIGRATORY ON
MULTICORE PLATFORMS

different scheduling policies (such as partitioned
EDF, global EDF, cyclic executive and global best
effort). A two level compositional technique is
employed for scheduling. This algorithm also
introduced a certain limitation on workloads such
as demanding all inter-task arrival time of level B
workloads be integer multiples of the level-A hyper
period (Mollison, et al., 2010).

Baruah et al. evaluate PS and GS approach for an
MC system and determined that PS is more efficient
(Baruah, et al., 2014). This is because the selected
utilization limits in schedulability analysis for GS
are more conservative whereas PS can exploit more
precise methods for schedulability tests (Baruah,
et al., 2014). Furthermore, PS is implemented in
industrial standards for MC scheduling (Rodriguez,
et al., 2013). Therefore, in this work we concentrate
on PS.

Gu et al. develop a PS approach called Mixed-
criticality Partitioning with Virtual Deadlines
(MPVD) (Gu, et al., 2014). In MPVD, HCTs are
mapped by means of the Worst-Fit approach then
LCTs are mapped by means of First-Fit. Workloads
are ordered by utilization at their criticalities.
Rodriguez et al. propose an analogous approach
trying other combinations of mapping approaches
(Best-Fit (BF), Worst-Fit (WF), First-Fit (FF) and
Next-Fit (NF) (Rodriguez, et al., 2013). The authors
conclude that an approach that allocates HCTs
first using WF then LCTs using FF, both ordered
by decreasing utilization achieves higher success
rate. (Kelly, et al., 2011) compare different mapping
heuristics for PS of the mixed-criticality system.
Workloads are sorted by non-increasing utilization
or by non-increasing criticality. They determined
that FF and BF with decreasing criticality return the
best performance.

PROBLEM DEFINITION AND NOTATION
In this section, we consider a set of n sovereign MC
sporadic tasks τ = {τ1

£, τ2
£,...,τn

£}, and a processor
Ψ with λ cores Ψ = {Ψ1,Ψ2,...,Ψλ}. Each workload
τi potentially releases an infinite sequence of MC
instances, with consecutive instances being arrived
at least Ti time units apart. Each sporadic task is
represented as a 5-tuple:

τi
£ = (£i, Ti, Di, Ei

2, Ei
1)

where

• £i ∈ {1,2} represents the criticality level of task τi.

• Ti ∈ R+ is the period (minimum arrival interval)

• Di ∈ R+ is the relative deadline. For an implicit
deadline sporadic tasks, Di = Ti.

• Ei
2 ∈ R+ is the estimated Worst-Case Execution

Time (WCET) of workload τi
£ in critical mode.

• Ei
1 ∈ R+ is the estimated WCET of task τi

£ in normal
mode.

For LCT, Ei
1= Ei

2 and for HCT Ei
1 < Ei

2. This is because
the Ei

2 is very pessimistic than Ei
1 (to ensure timeliness

guarantee).

OPERATING MODES OF THE SYSTEM
In a sporadic task model, each workload will have
definite values of period Ti and criticality £i. But,
its completion deadline Ei is indeterminate; it is
only discovered by executing an instance from the
workload until it signals completion. If all workloads
signal completion without overrunning Ei

1, the
system has exhibited its normal mode. On the other
hand, if any workload signals completion after
overrunning Ei

1 but not exceeding Ei
2, then it has

exhibited its critical mode behavior. If any workload
executes for more than Ei

2, then the system has
revealed erroneous behavior

Without loss of generality, we believe that all the
cores enter into critical mode simultaneously and
all incomplete instances from LCTs are canceled
during the mode transition. The rationale behind this
assumption is based on the fact that it is not essential
to assure LCTs a high-level guarantee once a system
exhibits its critical behavior. Task migration can be
achieved as soon as the criticality switch commences.
Once all the incomplete instances of HCT are finished
execution, the system returns to normal mode while
maintaining the schedulability of all necessary tasks.

UTILIZATION
Utilization denotes the overall fraction of an
execution time demand of a system. It is used only to
designate real-time recurrent (periodic or sporadic)
workloads. Given a set of MC sporadic workload
τi, the normal utilization of low-criticality task τi

1 in
N-Mode is defined as:

)1()(
1

11

T
EU

i

i
ii =τ (1)

The critical utilization of high-criticality task τi
2

 is
defined as

)2()(
2

22

T
EU

i

i
ii =τ (2)

MC-SCHEDULABILITY
A task τi

£ is MC-schedulable if and only if each

1748 NAGALAKSHMI ET AL.

instance from τi
£ is MC-schedulable. A set of MC

sporadic workload τi is considered to be temporally
correct (schedulable) by an algorithm ξ if and only
if ξ will consistently satisfy all deadline constraints
of τi to the certain degree of guarantee. The task set
τi is deemed feasible if there exist some ξ such that τi
is schedulable by ξ. The MC schedulability problem
is known to be NP-hard. This rigorous result holds
even in the extremely worst-case scenario such as
all instances of the task have equal periods, and
confidence level of each job is either 1 (low) or 2
(high).

CRITICALITY-AWARE PARTITIONED MC
SCHEDULING
This paper concentrates on the problem of effective
static-priority scheduling in an MC tasks on a
multicore processor. An MC system behaves
differently based on their execution mode. As stated
above, the parameters of an admitted workload
vary from one mode to another. This variation is
not necessarily uniform between all cores since
it hinges on the scheduling constraints of the
workloads assigned to the core and the technique
implemented by CA to estimate their WCET. So,
the idle computational power existing for LCTs
across cores does not necessarily modify by the same
ratio when a criticality switch happens. To date,
partitioning in an MC system is achieved such that
the timing constraints of HCTs in C-Mode and the
timing constraints of the LCTs in N-Mode are met
simultaneously. This can be excessively conservative.

Many task-to-core mapping algorithms have
been employed to the multicore scheduling of
conventional real-time workloads and of late applied
for MC applications (Kelly, et al., 2011). Some of
the most widely used approaches are BF, WF and
FF. To increase the performance of partitioning
heuristics when used to MC applications, we
propose to exploit our Criticality-aware Partitioned
Scheduling. Using this algorithm, a set of task is
completely partitioned under the stable execution
modes (N-Mode and C-Mode). Nonetheless, the
bin-packing approaches used to map HCTs and
LCTs are not necessarily the same. An LCT τi

1 in the
system may have two dedicated cores Ψ1 and Ψ2.
This technique circumvents the limitations of GS,
especially, the necessity to exploit the conservative
limits of GS, while being able to execute more tasks
than PS as illustrated by the experiments in the
following section.

In the context of operating mode, while the system
remains to perform in a specified mode, all workloads

are performed on their dedicated cores. But, when
a criticality switch happens, workloads may
transfer to other available cores. Task migration is
achieved dynamically to provide effective utilization
of resources in C-Mode. In order to maintain
deterministic behavior of HCTs, they are not allowed
to migrate. Only LCTs can transfer such that they are
assured to receive a minimum execution level.

ILLUSTRATIVE EXAMPLE
In order to exemplify the tenet of our Criticality-
aware Partitioned algorithm, we consider a sporadic
task set comprising of 4 workloads to be scheduled
onto two cores {Ψ1,Ψ2} as depicted in Table 1. As we
consider implicit-deadline workloads, the deadline
of the workload is equal to its corresponding inter-
task arrival time. Tasks are scheduled under Rate-
Monotonic scheduling approach. In the case of
workloads with equal inter-task arrival time, the
workload with the lower index has greater priority.
Without using PS algorithm, it is not feasible to
schedule these workloads on the given cores.

In normal mode, tasks τ1
2 and τ2

1 are allocated to core
Ψ1, while τ3

1 and τ4
2 to Ψ2. In N-Mode, the cumulative

utilization of task τ1
2 and τ2

1 is U1
2 + U2

1 = 0.30 + 0.15 =
0.45 ≤ 1 and the cumulative utilization of task τ3

1 and
τ4

2 is U3
1+U4

2 =0.25+0.30 = 0.55 ≤ 1. Hence, these tasks
are scheduled across two cores without violating
their timing correctness. In C-Mode, the utilization
of task τ1

2 is 0.90; hence τ1
2 cannot be scheduled

to a particular core with any other task. But, the
cumulative utilization of the other three workloads
would be U2

1 + U3
1 + U4

2 = 0.15+0.25+0.60 = 1; and
hence these three tasks are schedulable on a common
core under C-mode. With CaPA, it is possible to
assure the temporal correctness of the system by
migrating tasks. In C-Mode, τ2

1
 transfers to Ψ2 the

other workloads continue on their designated core.
(Fig. 1) illustrates the run-time execution behavior of
this task allocation.

• N-Mode (in an interval [0,26])

The system starts its execution in N-Mode. In this
mode, tasks τ1

2 and τ2
1 are allocated to core Ψ1, while

τ3
1 and τ4

2 to Ψ2. At time t = 26, τ1
2 executes for more

Task £ Ei
1 Ei

2 Ti Ui
1 Ui

2

τ1
2 2 6 18 20 0.30 0.90

τ2
1 1 6 6 40 0.15 0.15

τ3
1 1 10 10 40 0.25 0.25

τ4
2 2 6 12 20 0.30 0.60

Table 1. A dual-criticality task set

1749

CRITICALITY-AWARE PARTITIONED TASK SCHEDULING WITH LIMITED MIGRATORY ON
MULTICORE PLATFORMS

than its Ei
1 (i.e., 6 time units) and hence the system

enters into C-Mode. At this time, τ2
1 starts to transfer

to Ψ2.

• Mode change (in an interval [26,38])

All the active LCTs (i.e., τ3
1 in our example) are

discarded and no further tasks are permitted to
perform for the full mode changing period.

• C-Mode (in an interval ([38,80]:

At t = 38, all incomplete instances finish and the
system enters into C-Mode and τ2

1 is executing on Ψ2.

The Criticality-aware Partitioned algorithm (CaPA)
(Algorithm 1) is developed to achieve efficient
partitioning. We use two different partition
techniques: NORMAL-partition is implemented in
N-Mode and CRITICAL-partition for C-Mode. Our
CaPA scheme divided into two parts: partitioning
and optimization.

PARTITIONING
CaPA introduces two partitioning strategies (i.e.,
NORMAL-partition and CRITICAL-partition). This
is realized in three steps: first allocate the HCTs,
followed by LCTs in C-Mode, and finally LCTs in
N-mode.

For each step, a task-to-core allocation policy is
used to allocate tasks. Task-to-core allocation () in
Algorithm 2 is used for allocating workloads in a
particular mode based on the packing criteria Pack
such as WF or BF. For the partition in C-Mode (i.e.,
Mode = 2), workloads are first ordered by non-
increasing critical utilization and cores are ordered
according to Pack. Then, workloads are allocated
serially. Before a workload τi is allocated to a core,
the schedulability of the core needs to be tested. It
is only essential to test the schedulability in C-Mode
by means of SCHED-CRITICAL (); for the partition
in N-Mode (i.e., Mode = 1), workloads are ordered
by decreasing Ui

1 and allocated serially after testing
the schedulability of the core by means of SCHED-
NORMAL-and- M_CHANGE ().

The algorithm CaPA can be implemented with any

task-to-core allocation technique. By varying the task
ordering principles, the packing criteria for HCTs
(Pack 1 in Algorithm 1) and for LCTs (Pack 2), various
algorithms can be developed. Simulation results
revealed that using WF for partitioning HCTs yields
the best results, as it allocates the HCTs across all
the available cores uniformly leaving more freedom
to partition the LCTs across all available cores. For
LCTs, it is evident that the implementation of FF
realizes higher schedulability for these workloads.

Algorithm 1:

 CaPA (τ, Ψ, Pack1, Pack2)

1: [τ2, τ1] = Split (τ)

2: Step: 1.a: allocate HCTs ►Partitioning

3: If Task-to-core allocation (τ2,Ψ,Pack1,2)==FALSE
then

4: Return FAILURE

5: Endif

6: Step 1.b: allocate LCTs in C-Mode

7: If Task-to-core allocation (τ1,Ψ,Pack1,2)==FALSE
then

8: Return FAILURE

9: Endif

10: CRITICAL-partition = current partition

11: Step 1.c: allocate LCTs in N-Mode

12: DeAllocateTasks (τ1)

13: If Task-to-core allocation (τ1,Ψ,Pack2,1)==FALSE
then

14: Return FAILURE

15: Endif

16: Step 2: optimizeallocation ► Optimization

17: MIG_TASK = tasks τi with Ψi
1 != Ψi

2 ordered by
decreasing Ui

1

18: For all τi ∈ MIG_TASK do

19: If SCHED-NORMAL-and-M_CHANGE (τi,Ψi
2)

then

20: Allocate (τi, Ψi
2)

21: MIG_TASK.update ()

22: Endif

23: Endfor

24: For all τi, τj ∈ MIG_TASK do

25: If Ψi
2== Ψj

1 then

Fig. 1 Example system execution trace.

1750 NAGALAKSHMI ET AL.

26: If SCHED-NORMAL-and-M_CHANGE
(τi, Ψi

2−τj) &&

 SCHED-NORMAL-and-M_CHANGE (τj,Ψi
1−τi)

then

27: Swap (τi, τj)

28: MIG_TASK.update ()

29: Endif

30: Endif

31: End for

32: NORMAL-partition = current partition

33: Return SUCCESS

OPTIMIZATION
This phase optimizes the partitioning achieved in
the previous phase and decreases the switching
overhead. This is accomplished by switching the
allocation of some LCTs in N-Mode. The workloads
that transfer during switching mode are put in the list
MIG_TASK and arranged by non-increasing order
of Ui

1. Then, for each workload τi in MIG_TASK,
two attempts are made to transfer the workload: (i)
reschedule the workload in N-Mode to the same core
Ψi

2 to which it is allocated in the C-Mode. If this fails,
one more effort is made to exchange workload τi
with another transferring workload τj from Ψi

2 such
that Ψj

1 = Ψi
2 but Ψj

2 ≠ Ψj
1. To check the schedulability

of the system, we use two functions: (i) SCHED-
CRITICAL () used in the CRITICAL-partition; and
(ii) SCHED-NORMAL-and-M_CHANGE () used in
the NORMAL-partition.

Algorithm 2

 Task-to-core allocation (τ, Ψ, Pack, Mode)

1: Sort (τ, DU)

2: Sort (Ψ, Pack)

3: For each τi ∈ τ do

4: For each Ψj ∈ Ψ do

5: If Mode == 2 then

6: Sched = SCHED-CRITICAL (τi, Ψj)

7: Else

8: Sched=SCHED-NORMAL-and- M_CHANGE
(τi,Ψj)

9: Endif

10: If sched then

11: Allocate (τi, Ψj)

12: Sort (Ψ, Pack)

13: NextWorkload

14: Endif

15: Endfor

16: If τi not mapped to any core then

17: Return FAILURE

18: Endif

19: Endfor

20: Return SUCCESS

Function for NORMAL-partition

As we know that instances from LCTs are discarded
during mode transition, the method used for
schedulability analysis in AMC-rtb algorithm
(Baruah, et al., 2011; Bini and Buttazzo, 2005) can
be reclaimed for our work. The function, SCHED-
NORMAL-and-M_CHANGE () is implemented
to test the schedulability in normal execution and
switching mode.

Function for CRITICAL-partition

In this partition, the set of workload mapped to the
core during CRITICAL-partition is considered. All
the workloads (HCTs and LCTs) are tested using
their C-Mode constraints using SCHED-CRITICAL
(). The Worst Case Response Time (WCRT) for
workload τi in CRITICAL-partition is calculated as:

2

2
2 2

()

i
i i

j h i j

RR E
T∈

 
= +  

  
∑ (3)

where h2 (i) indicates the set of workloads which
have greater priority than the active workload on
the same core. We now proceed to evaluate our
CaPA algorithm for the multicore processor. First,
we evaluate various bin-packing approaches and
assess their performance by implementing our
CaPA on them. We will use the symbolization a/b to
designate various algorithms where ‘a’ is the task-to-
core allocation approach used for HCTs and ‘b’ the
allocation approach for LCTs, where a, b ∈ {WF, FF,
BF}. For instance, WF/BF is the algorithm developed
by implementing WF to HCTs and BF to LCTs.

EXPERIMENTAL EVALUATION
For our experiments, the period the workloads
are arbitrarily selected from the set {10, 20, 50,
100, 200, 400, 500, 1000} ms. The Cfact for HCTs
defining the ratio between Ei

2 and Ei
1 was arbitrarily

chosen from 1 to 4. Deadlines were implicit. The

1751

CRITICALITY-AWARE PARTITIONED TASK SCHEDULING WITH LIMITED MIGRATORY ON
MULTICORE PLATFORMS

utilization bounds of workloads were fixed using
the UUnifast (Bini and Buttazzo, 2005) method with
the low (high)-utilization capped at 0.5 (0.85) per
workload. The UUnifast creates workloads such
that their cumulative Ui

1 is equal to 85% of the total
processing capacity of the system. The parameter Ui

2

is calculated from other arbitrary factors (Cfact and
Ti). Any task set with Ui

2 > Uλ (where Uλ is the total
processing capacity of the system) was dropped.
The parameter Ei

1 of the workload is then obtained
from the inter-task arrival time (Ti) and Ui

1. The
completion deadline Ei

2 is derived from Ei
1 and Cfact.

Unless otherwise stated, 50% of the workloads in the
system are HCTs. Furthermore, each data point in
the graphs is drawn from 200 workloads.

In our first experiment, we evaluate the bin-packing
heuristics before implementing CaPA, which consist
of 9 mixtures of approaches (i.e., WF/WF, WF/BF,
WF/FF, BF/WF, BF/BF, BF/FF, FF/WF, FF/BF, FF/
FF). Moreover, we also report the throughputs of
the original task-to-core allocation strategies, which
order workloads by decreasing utilization (DU) thus
neglecting their level of importance. (Fig. 2) exhibits
the ratio of schedulable tasks (acceptance ratio)
against the normalized Ui

1. For this experiment, 50
tasks (25 LCT, 25 HCT) were scheduled on 4 cores.

The results in (Fig. 2) show that the mapping
techniques that allocate HCTs using WF policy
provide considerably better performance than the
remaining ones. Among these, using FF for LCTs
provides the best acceptance ratio. Interestingly, this
achieves a similar result as prior work in (Rodriguez,
et al., 2013) for EDF-VD algorithm. The rest of this
section focuses on WF/FF heuristic owing to its
superior performance and exhibits substantial
enhancements in the context of implementing the
CaPA to it (WF/FF-CaPA). Exploiting CaPA on
other approaches makes identical enhancements.
But, those results are not presented in this paper by
reason of space constraints.

Workload is then obtained from the inter-task
arrival time (Ti) and Ui

1. The completion deadline
Ei

2 is derived from Ei
1 and Cfact. Unless otherwise

stated, 50% of the workloads in the system are HCTs.
Furthermore, each data point in the graphs is drawn
from 200 workloads.

In our first experiment, we evaluate the bin-packing
heuristics before implementing CaPA, which consist
of 9 mixtures of approaches (i.e., WF/WF, WF/BF,
WF/FF, BF/WF, BF/BF, BF/FF, FF/WF, FF/BF, FF/
FF). Moreover, we also report the throughputs of
the original task-to-core allocation strategies, which

order workloads by decreasing utilization (DU) thus
neglecting their level of importance. (Fig. 2) exhibits
the ratio of schedulable tasks (acceptance ratio)
against the normalized Ui

1. For this experiment, 50
tasks (25 LCT, 25 HCT) were scheduled on 4 cores.

The results in (Fig. 2) show that the mapping
techniques that allocate HCTs using WF policy
provide considerably better performance than the
remaining ones. Among these, using FF for LCTs
provides the best acceptance ratio. Interestingly, this
achieves a similar result as prior work in (Rodriguez,
et al., 2013) for EDF-VD algorithm. The rest of this
section focuses on WF/FF heuristic owing to its
superior performance and exhibits substantial
enhancements in the context of implementing the
CaPA to it (WF/FF-CaPA). Exploiting CaPA on
other approaches makes identical enhancements.
But, those results are not presented in this paper by
reason of space constraints.

 (Fig. 3) illustrates the enhancement gained by
implementing CaPA on the WF/FF heuristic.
This combination, WF/FF-CaPA algorithm (i.e.,
Algorithm 1 with Pack1=WF and Pack2 = FF)
dispatches more tasks than the traditional WF/
FF heuristic, particularly at higher utilizations. At
utilizations of 0.8 and higher the WF/FF-CaPA
improves the acceptance ratio of WF/FF by 23%
increasing at utilizations of 0.9 and beyond to 31%.
To analyze the predictability of CaPA at different
parameters, the basic scheduling factors were
varied in the following simulations. The normalized
utilization was varied by changing the number of
the workload from 10 to 200 while preserving the
parameter Ui

1 = 0.75 per core.

 (Fig. 4) illustrates the acceptance ratio of tasks against
the total number of admitted tasks (a higher number
of tasks implies lower average task utilizations). A
close observation of the (Fig. 4) shows that WF/FF-
CaPA increases the acceptance ratio of WF/FF by an

Fig. 2 Acceptance ratio at different Ui1 for various
heuristics (before applying CaPA).

1752 NAGALAKSHMI ET AL.

average of 24%. This ratio is increased for systems
with a large number of workloads.

 (Fig. 5) shows the impact of Prob (τ2) on CaPA
schedulability. Here, the parameter Prob (τ2)
represents the probability of a task to be a high-
criticality task. The Prob (τ2) is varied in the range
[0.1 – 0.8] while preserving all other scheduling
factors constant. For scheduling scenario with Prob
(τ2) ≤ 0.3, almost all tasks are schedulable. As the
Prob (τ2) increases, the acceptance ratios of both
approaches reduce but WF/FF-CaPA performs
better. The implementation of our algorithm in WF/
FF packing heuristic (i.e., WF/FF-CaPA) schedules
73.3% of tasks whereas WF/FF schedules 54.6%.

CONCLUSION
There has been a growing research interest in the
scheduling of MC workloads in multicore platforms.
We investigate the static-priority partitioned
scheduling on safety-critical multicore platforms
in this document. We evaluate the performance of
different task-to-core mapping approaches when
applied to sporadic MC tasks. We also develop a
Criticality-aware Partitioned Algorithm for multicore
processors. Our proposed algorithm combines
a partitioned scheduling approach with various
mapping strategies to enable better utilization of
system resources. CaPA is easily implemented with
any task mapping heuristic and can always exhibit
noticeable schedulability improvements on HCTs
while delivering a certain level of timing assurances
to LCTs. Future work includes extending CaPA to
consider common platforms and run-time overheads
(e.g., context switches and migrations).

REFERENCES
Anderson, J.H., Bud, V. and Devi, U.C. (2005).

An EDF-based scheduling algorithm for
multiprocessor soft real-time systems. In:
Proceedings of EUROMICRO Conference on Real-
Time Systems (ECRTS). 199–208.

Andersson, B. (2008). Global static-priority
preemptive multiprocessor scheduling with
utilization bound 38%. In: Proceedings of
ACM International Conference on Principles of
Distributed Systems (OPODIS).5401 : 73-88.

Andersson, B., Baruah, S. and Jonsson, J. (2001).
Static-priority scheduling on multiprocessors.
In: Proceedings of 22nd Real-Time Systems
Symposium (RTSS). IEEE.

Baruah, S., Burns, A. and Davis, R.I. (2011). Response-
time analysis for mixed criticality systems.
In: Proceedings of 32nd Real-Time Systems
Symposium. 34-43.

Baruah, S., Chattopadhyay, B., Li, H. and Shin,
I. (2014). Mixed-criticality scheduling on
multiprocessors. Real-Time Systems. 50 : 142-177.

Bini, E. and Buttazzo, G. (2005). Measuring the
performance of schedulability tests. Real-Time
Systems. 30 : 129-154.

Burns, A. and Baruah, S. (2013). Towards a more
practical model for mixed criticality systems. In:
Proceedings of 1st Workshop on Mixed-Criticality
Systems (collocated with RTSS).

Buttazzo, G.C., Lipari, G. and Abeni, L. (1998).
Elastic task model for adaptive rate control. In:
Proceedings of 19th IEEE Real-Time Systems
Symposium. 286-295.

Fig. 4 Enhancement of the acceptance ratio for varying
number of workloads.

Fig. 5 Enhancement on acceptance ratio at different
Prob (τ2).

Fig. 3 Enhancement of the acceptance ratio at different Ui
1.

1753

CRITICALITY-AWARE PARTITIONED TASK SCHEDULING WITH LIMITED MIGRATORY ON
MULTICORE PLATFORMS

Gu, C., Guan, N., Deng, Q. and Yi, W. (2014).
Partitioned mixed-criticality scheduling on
multiprocessor platforms. In: Proceedings
of Design. Automation and Test in Europe
Conference and Exhibition (DATE).

Kelly, O.R., Aydin, H. and Zhao, B. (2011). On
partitioned scheduling of fixed priority mixed-
criticality task sets. In: Proceedings of 10th
International Conference on Trust, Security and
Privacy in Computing and Communications.
1051-1059.

Mollison, MS., Erickson, J.H., Anderson, B., Baruah,
S K. and Scoredos, JA. (2010). Mixed-criticality
real-time scheduling for multicore systems. In:
Proceedings of 10th International Conference on
Computer and Information Technology (CIT).
1864-1871.

Rodriguez, P., George, L. and Goossens, J. (2013).
Multi-criteria evaluation of partitioned EDF-

VD for mixed criticality systems upon identical
processors. In: Workshop on Mixed Criticality
Systems.

Su, H. and Zhu, D. (2013). An elastic mixed-criticality
task model and its scheduling algorithm. In:
Proceedings of Design. Automation and Test in
Europe Conference & Exhibition (DATE).

Su, H., Zhu, D. and Moss´e, D. (2013). Scheduling
algorithms for elastic mixed criticality tasks
in multicore systems. In: Proceedings of 19th
International Conference on Embedded and Real-
Time Computing Systems and Applications. 352-
357.

Yip, E., Kuo, M., Broman, D. and Roop, P. (2014).
Relaxing the synchronous approach for mixed-
criticality systems. In: Proceedings of 20th IEEE
Real-Time and Embedded Technology and
Application Symposium. 89-100.

