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INTRODUCTION

In ideal viscoplastic fluids (Bingham fluids), 
viscoplastic properties are conditioned by physical 
and chemical structure of the fluid when the 
volume is deformed in the presence of gradient of 
concentration, temperature and amount of motion, 
and shear resistance to fluid layers occur. Individual 
molecular chains change their length and shape. 
Changing the shape and length of molecular changes 
causes a plastic layer shear during the initial moment 
of time, which causes the initial shear stress to occur. 
When the opportunities of changing the length and 
shape of individual molecular chains are exhausted, 
we will see a shear of individual layers of plastic, 
and the plastic friction law will become effective 
according to the Bingham model. An example of 
liquids similar to Bingham plastic are polymers 
and their solutions (Alexandrov and Kibirev, 2016; 
Alexandrov, et al., 2012).

ABSTRACT

An important trend in mining production intensification, increasing its efficiency and 
competitiveness in the conditions of modern market relations, is creating a robust transportation 
basis that could significantly increase the performance of the transportation system with 
simultaneous reduction of transportation prime cost of minerals and products of their processing. 
Developing this basis is related to implementing continuous means of transportation among 
which hydraulic pipeline transport is most common in the mining industry.

The calculation of head losses and flow friction characteristic is one of the most important 
tasks in designing hydrotransport systems. The efficiency of a hydrotransport system 
depends on solving this task. To reduce the energy consumption and specific amount 
of metal in a transportation system, mineral processing companies transport processing 
products in concentrated condition. Such hydraulic fluids are typical of showing initial 
shear stress ( 0τ ) and effective dynamic viscosity (ηef), as well as other rheological 
characteristics that affect the primary parameters of hydrotransport, including head lossess.
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METHODS
When mixing a liquid continuous and solid discrete 
medium, a new continuous medium is formed, a 
suspension with the properties differing from its 
components taken separately. Every particle of the 
small-fraction solid phase in the aqueous medium 
receives a liquid shell on its surface, which results 
in a dipole to be formed that carries a positive and 
negative charges. The dipole orientation in the fluid 
volume is defined by their interaction. As a result 
of this interaction, a structure is formed and the 
suspension can be regarded as a continuous media. 
When the force F acts on the volume of this fluid, 
solvate shells of dipoles are initially deformed and 
the initial shear resistance 0τ  occurs, which in this 
case is caused by an elastic strain. Individual layers 
of the hydraulic fluid are sheared and the plastic 
viscosity occurs. This mechanism of viscoplastic 
properties demonstration is typical of the fluids that 
include small and almost homogeneous particles, 
such as kaolin hydraulic fluid.
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Real fluids include particles of small classes, but 
heterogeneous in shape. Therefore, some solid 
particles will not be fully covered with a solvate 
shell or will lose it. In case of volume deformation 
of this suspension, viscoplastic friction is added by 
purely mechanical friction of particles that have lost 
it or failed to obtain solvate shells on its surface. The 
viscosity in these fluids is manifested as a total effect 
of plastic viscosity caused by the shear resistance of 
individual hydraulic fluid layers and by the friction 
resistance of solid particles that have no solvate 
shells. Consequently, viscoplastic properties in the 
volume of suspensions are related to their physical 
(dipole formation) and mechanical (friction) nature. 
In accordance with this model of viscoplastic friction 
occurrence, occurring resistances can be associated 
with some effective (apparent) viscosity according to 
the formula (Darcy, 1957).

stref k⋅= ηη  				                     (1)

Where efη = effective viscosity (viscosity from total 
effect), stk = coefficient structure.

Consequently, the viscosity coefficient depends on 
the structural viscosity stη  that will be associated 
with the effective viscosity through the following 
ratio:

ef
r

st

k
η
η

= 					                    (2)

Where rk -plastic viscosity coefficient.

Every component of effective viscosity is defined by 
its own shear angle (Fig. 1).

Due to the abnormal (in relation to the Bingham 
model) manifestation of plastic properties, such fluids 
can be referred to a class of Bingham pseudoplastics 
(Heywood and Richardson, 1978).

As the concentration of solids grow, the Newton 
viscosity increases, and at some limit concentration, 
structural properties occur in the hydraulic fluid 
volume, viscosity appears, along with the initial 
shear resistance (Heywood and Alderman, 2003).

The ratio between plastic and structural viscosity is 
determined from the formulas (1) and (2), where we 
obtain

r
r st

st

k
k

η η= ⋅ 				                    (3)

The effective viscosity expresses a mean viscosity 
and is a function of the mean concentration of solid 
particles and the suspension flow cross-section. 
The structural viscosity is manifested in case of 
plastic deformation of the hydraulic fluid volume 
at the border of the flow core, and it is constant in 
magnitude and has the maximum value (Kumar, et 

al., 2015). The plastic viscosity effect occurs in case 
of the deformation of hydraulic fluid layers and 
depends on the structural viscosity in its value. 
The formulas result in 1stk > , and 1<rk . If 1r

st

k
k

=
, then r stη η=  and, consequently ef rη η=  , e.g., in 
this case, the hydraulic fluid represents a pure 
liquid. The structure coefficient value, as well as the 
values of effective viscosity components, is defined 
by the concentration of solids of the tail pulp, e.g., 

( )st volk f c= . 

With respect to specific features of how viscoplastic 
properties of highly concentrated small-fraction 
hydraulic liquids considered above manifest 
themselves, the Bingham model for them can be as 
follows:

o r st
dvk
dy

τ τ η= + 				                    (4)

or through the structural viscosity
r

o st
st

k dv
k dy

τ τ η= + ⋅ 			                    (5)

The models (4) and (5) differs from the Bingham-
Shvedov model in that the effective viscosity 
considers both structural and plastic properties of 
the deformed volume of the fluid medium (hydraulic 
fluid). 

Hydraulic fluids of tailings are formed when fine 
particles of iron ore are mixed with the liquids 
phase-water. The primary properties of formed 
hydraulic fluids depend on the number of particles 
in the volume of water accommodating them. In case 
of small concentrations of solids, the hydraulic fluid 
slightly differs from the standard Newton liquid, and 
the model of this suspension is the Newton viscous 
friction law (Schmitt, 2004).

dv
dr

τ µ µγ= =  					       (6)

Where µ =suspension dynamic viscosity coefficient, 
dv
dr

γ= =velocity gradient upon the pipeline cross-
section, dv =infinitely small change of the suspension 
flow velocity towards an infinitely small change of 
the flow radius dr .

Integrating the equation (6) results in the known 
Hagen-Poiseuille formula for the liquid flow

L
pd

L
pRQ

µ
π

µ
π

1288

44 ∆
=

∆
=  			                   (7)

or for the mean flow velocity
2

32
d pv

Lµ
∆

=  				                    (8)

Where R =internal pipe radius, p∆ =pressure 
difference in the selected pipe section L  long, Rd 2=
=internal pipe diameter.
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The dynamic viscosity coefficient is expressed from (9).
4

128
d p

QL
πµ ∆

=  				                    (9)

The last equation can be represented as follows:

3

4
32
d p L

Q d
µ

π
∆

=

In the numerator of the equation (10) there is 
the expression for the tangent shear stress τ  on 
the pipeline wall, and in the denominator, is the 
expression for the shear rate gradient γ , e.g.,

3

32dv Q
dr d

γ
π

= =  			                                   (10)

Taking into account that the volumetric flow rate 
in the pipe cross-section is proportional to the man 
linear flow velocity and the pipe cross-section area, 
we obtain as follows for the shear rate gradient

8v
d

γ =  					                    (11)
Re 2200≤

The reduced expressions are true for vicious fluids 
whose flows in laminar conditions result in resistances 
conditioned by tangent stresses in accordance with 
the Newton friction law (Portable Surface Roughness 
Tester Surftest SJ-210 Series, 2014).

As the concentration of solids increases to some limit 
value, a spatial structure is formed in the suspension 
volume, with somewhat organized orientation 
of particles upon the pipeline cross-section. The 
hydraulic fluids rheological characteristics start 
differing from their values in case of a simple 
vicious friction. For this case, we can use the solution 
(Nikuradse, 1932) relative to the shear rate gradient:

( )
( )

3

3

883
4 4

d Q ddv Q d p
dr d L d d p L

π
γ

π
∆   = − = +    ∆   

  	                (12)

that will look as follows when substituting 
( )
( )

ln 4
ln 8

d D p L
n

d v D
∆   =

  
3 1 8

4
n v

n D
γ +
= ⋅ 				                  (13)

Where D =internal pipeline diameter.

With respect to these transformations, the initial 
equation of the shear stress dependency from the 
deformation rate will look as follows:

8
4

nd p vk
L d
∆  =  

 
 or ( )

n
n dvk k

dr
τ γ τ  = ⇒ =  

 
            (14)

The last expression defines the connection between 
shear stresses on the pipeline wall in the laminar 
flow area for liquids and hydraulic fluids differing 
in rheological parameters from Newton liquids. 
k  coefficient is viscosity (pseudoviscosity) with 
the size of nPa s ⋅  , which makes this parameter 
different from the Newton fluid viscosity coefficient. 
The exponent of power n  in the equation (13) 
defines the flow curve inclination angle to the axis 
lgγ in logarithmic coordinates and, respectively, 
shows the difference of this non-Newton liquid from 
the Newton one and is referred to as the structural 
number. 

The formula (14) is referred to as the Ostwald-
de-Valle rheological model and describes the 
dependency of tangent shear resistances from the 
deformation rate gradient for an exponential friction 
law. The structural number is 1<n  and can be defined 
by means of viscometric experiments.

Fig. 1 Dependency of shear resistance and viscosity on the deformation rate gradient for small-fraction 
hydraulic fluids.
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To define the connection of parameters  and n , 
we should transform the shear stress equation into 

r
L
p∆

=
2
1τ , which allows changing the formula (14) as 

follows
1 1

2

ndv dv pk r
dr dr L

− ∆
− =  			                 (15)

Since 0dv
dr

< , it means that 
1

1

2
n

ndv p r
dr kL

∆ = − ⋅ 
 

          (16)

By integrating this equation with the limit condition 
of ( ) 0=orv meaning that the liquid velocity on pipe 
walls equals zero, we find the velocity distribution 

law ( )
1

1 1

01 2

n nn
n nn pv r r r

n kL

+ + ∆ = − −  +    
The maximum flow velocity maxv is achieved on the 
pipe axis (r = 0): 

1

max 1 2

n
n

o
n pv r

n kL

+∆ = ⋅ =  
		                               (17)

The liquid flow rate will be calculated under the 
formula

( )
1 1

0

2 2
1 2

o or r n n
n n

o
o

n pQ r v r dr r r r dr
n kL

π π
+ + ∆ = ⋅ = ⋅ ⋅ ⋅ −  +    

∫ ∫   (18)

After integration, we obtain as follows 
1

3

3 1 2
n

o or n r pQ
n kL
π ∆ =  +  

 				    (19)

For a full pipeline cross-section when r0 = R, the flow 
rate in the pipeline will be

1
3

3 1 2
nR n R pQ

n kL
π ∆ =  +  

 			                  (20)

that is transformed into the Hagen-Poiseuille in case 
of n = 1

4

8
p RQ

L
π
µ

∆
=

If we introduce the cross-section mean flow velocity 
v  and a generalized number of Re*, in accordance 
with the equalities 2R

Qv
π

=  and 
2

*Re
n nv d
k

ρ−

= , the 

liquid flow rate formula under the Ostwald-de-Valle 
model can be recorded as the Darcy-Weisbakh law, 
e.g., through the hydraulic resistance coefficient

2
1 2v
dL

P ρλ=∆ , where 
*

6 28

Re

nn
nλ

+ 
 
 =

To apply the Ostwald-de-Valle model in practice 
when calculating the flow of hydraulic fluids, we 
can use experimental viscometric data obtained with 
a capillary viscosity gage. The principle of action of 
these viscosity gages is based on determining the 
time of free flow of the fixed portion of the tested 

hydraulic fluid from the gage's chamber through 
a narrow cylindrical pipe (capillary) (Furlan and 
Visintainer, 2014). 

By replacing the pressure gradient 
L
P∆  in the formula 

(20) with a value of gρ , we obtain as follows:
nn

k
gr

n
nr

k
gr

n
nr

Q

1
3

1
3

213213 







+

=







+

=
ρ

πρπ  	               (21)

From the formula (21), we see that when the specified 
volume of the investigated liquids completely flows 
through Ostwald viscosity gage capillaries with the 
radii of 1r  and 2r , the following relation will be true 

n

r
r

Q
Q

13

2

1

2

1
+









= ,

Since the relation between outflow rates is reversely 
proportional to the period of outflow, we obtain as 
follows

n

d
d

t
t

13

2

1

1

2

+









=  				                    (22)

Where 1t  and 2t  = period of outflow through 
capillaries with 1r  and 2r .

The structural number of n  is calculated under 
the formula (22). The second constant (apparent 
viscosity) of k  is defined from the formula (23).

1
3

1 1 1
14 ,

3 1 4 3 1

nr n d g r nkQ d g
n k n
π π

ρ ρ
   = ⇒ =   + +  

             (23)

Now we can calculate the coefficient of hydraulic 
resistances λ  and pressure loss 

L
p∆ , Pa/m.

In this manner, when the concentration of particles 
in the hydraulic fluid volume increases, the liquid 
model transforms into the exponential liquid model 
corresponding to the Ostwald-de-Valle model that is 
generalized as related to the Newton mode, since the 
latter is transformed into the Newton model when 
the structural number 1=n . The concentration 
of solids when viscoplastic properties occur that 
correspond to the Ostwald-de-Valle exponential 
model is a limit (or critical) concentration- ccr 1. The 
limit concentration value ccr 1 can be defined based on 
experimental data. The initial shear starts manifesting, 
and the viscous liquid model is transformed into the 
Shvedov-Bingham model (Fig. 2).

The parameter values included into the rheological 
equation (23) depend on the concentration of solids 
in the fluid flow. For some concentration values, 
the initial shear stress becomes zero, as well as the 
structure coefficient. In this case, the equation (23) 
is transformed into the equation for Newton liquid. 
The equation shows that when the viscoplastic fluid 
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flows through a pipeline d  in diameter, the fluid 
flow is divided into two zones:

- flow core characterized by the initial shear resistance 
of τ 0 , the flow core radius of r0  and some cross-
section mean concentration of solids cm ;

- annular flow between the flow core and the pipeline 
wall, e.g., flow in the gap limited by internal radius r0  

and external radius rd
=

2
, so that the thickness of the 

annular flow zone equals r r− 0 . The concentration 
of particles in the annular flow changes from the 
maximum mean value of cm  at the boundary of the 
flow core to zero on the pipeline wall (Yagi, et al., 
1972).

The fluid flow schematics in the pipeline cross-
section are given in Fig. 3.

The relative dimensions of flow areas (flow core 
and annulus) depend on the concentration of solids. 
When the concentration decreases, the flow core is 
also decreased or may even disappear at some point. 
The entire pipeline cross-section is occupied by the 
annular zone, and the effective viscosity becomes 
equal to the plastic viscosity.

The structure coefficients change from 1 (at minimal 

concentration) to some maximum value when the 
concentration is decreased. For the limit values of 
concentration, the structure coefficient formula may 
be represented as follows:

( )1
m

st volk cα= −    			                     (24)

Where 
2

1
1 crc

α =
−

m is a coefficient whose numerical 

value depends on the limit concentration value ccr 1 

when the core is formed, m is a coefficient describing 
mechanical properties of a solid material.

In accordance with the formula (24), the structure 
coefficient kst equals as follows:

0 for 1st volk c= =  

2for1st vol crk c c= =

For the concentrations equal to the limit value, the 
flow structure starts to form, and the primary impact 
on the flow will be originated from the plastic 
properties of the fluid and the viscosity in accordance 
with the Ostwald-de-Valle model.

Fig. 3 shows that the total flow rate of the hydraulic 
fluid through the pipeline cross-section will be equal 
to the sum of flow rates in the flow core and in the 
annular zone, e.g., 

rQQQ += 0  				                  (25)

Where Q =total flow rate in the pipeline; 0Q –flow 
rate in the central area (in the flow core); rQ -flow rate 
in the central area of the flow.

By expressing the flow rate through the flow velocity 
and the cross-section, we obtain as follows:

0

2
0 0 0 ,

2 ( )
R

r
r

Q r v

Q r v r dr

π

π

= ⋅ ⋅

= ⋅ ⋅∫
 			                   (26)

Where 0v = fluid velocity in the flow core, ( )rv =flow 
velocity in the annular area that is a function of 
radius.

To determine the change law for velocities 0v  and 
( )rv  , we will consider forces acting on the fluid flow 

elements (Fig. 4):

2 2 ( )2 ( ) 0p rdr rl d r dr lπ τ π τ τ π∆ − + + + =
( ) 0

d r p r
dr L
τ ∆

+ ⋅ =  			                  (27)

Let us record the Shvedov-Bingham equation 

( )0
dvc
dr

τ τ η= + ⋅  and differentiate it for the limit 

values of tangent stresses 
0

0

0 0r r
r r

dv
dr

τ τ=
=

= → = , then 

0 0

dvd r
pdr r

dr L

η
τ

 
  ∆ + + = , from which we will obtain 

STUDY ON AIR QUALITY MANAGEMENT IN ADYAR RIVER BASIN: A REVIEW

Fig. 2 Dependency of effective viscosity components on 
the concentration of coal particles.

Fig. 3 Flow cross-section scheme under Shvedov-
Bingham model.
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after dividing variables: 
2

12o
dv p rr r C
dr L

η τ ∆
= − − + . 

By solving the equation in relation to the velocity v
, we will obtain the following equation

1 22
o o o

r r r

o
r r r

dr p rdr drv C C
l r

τ
η η η

∆
= − − + +

⋅∫ ∫ ∫  	              (28)

The integration variables C1 and C2 are 
defined with respect to the limit conditions: 

0==Rrv , and will be as follows for constant C2: 

2 1 .
2

o o o

R R R

o
r r r

dr p rdr drC C
l r

τ
η η η

∆
= + −∫ ∫ ∫

By substituting the obtained value of C2 in the 
velocity formula, we will determine C1 constant:

12

R R R

o
r r r

dr p rdr drv C
l r

τ
η η η

∆
= + −

⋅∫ ∫ ∫
2

1 2 ooo r
l
prC ∆

+=τ

The final law of flow velocity change in the pipeline 
cross-section will be as follows

2 2

R R R

o o o
r r r

dr p rdr pr drv r
l l r

τ τ
η η η

∆ ∆ = + − + 
 ∫ ∫ ∫             (29)

The final integration of the equation (29) will result 
in the following hydraulic fluid flow rate formula

3 33
o o o o

st p p

r rRQ τ ττπ
η η η

 
= + −  

 
 			   (30)

Let us reduce the formula to a non-dimensional form 
by dividing it by parameter 

3
o o

o
st

r Qτ
η

=  and by taking 

the ratio of 1st

r

η
η

= , we will obtain: 
3

3
st

o o ef

Rq
r

ητ
τ η

=  			     	               (31)

Let us denote τ
τ

σo =  and record as follows, in 

accordance with (30), (31): 				  
1 , , .efst st st

r r st st
ef r r r r

kK K k k
k k

ηη η
η η η

= = = = =

As a result, the formula (31) will be the following 
non-dimensional function:

 ( )3
3 31 1r str

o
o o

K kKq σρ
σρ σρ

= = + −  		                   (32)

Where 
R
r0

0 =ρ  is denoted.

The formula shows that the average flow rate of the 
hydraulic fluid is defined by the flow core radius, the 
shear stress and the viscosity in flow areas. Each of 
these zones is characterized by its viscosity value. The 
equation (32) is a final view of the mathematic model 
of the process expressed in a non-dimensional form. It 
follows from the equation that for 0 0 r stρ η η= ⇒ =  
and, consequently, the continuum represents a pure 
liquid; for 0 1 ef stρ η η= ⇒ =  and the continuum is 
expressed by a solid body. 

Taking into account that the relative stress σ  is a 
relation between the initial shear resistance 

0τ  and 
the total shear resistance on the pipeline wall, and 
referring to the rheological model of the suspension 
flow, we can record it as follows:

( )0 1
1

ef
ef

η γ
τ τ η γ τ σ τ

σ
− = = − → =

−


  	                (33)

or, for the initial shear resistance,

1o ef
στ η γ
σ

=
−

  			                    (34)

The formulas (33) and (34) are easily transformed into 
the expression for pressure losses along the pipeline 
length if we record the shear stress through normal 
stress originated from the pressure difference:

44
DiD

l
p

=⋅
∆

=τ ,

Where i = pressure losses along the pipeline length, 
Pa/m.

By substituting the expression for the shear resistance 
in the formula (34), we will obtain a formula for 
pressure losses:

( )
4

1
efi

D
η γ
σ

=
−


 Pa/m 				                  (35)

On the other hand, f f
p gi

L
ρ∆

=  and 
4

f
f

gD
i
ρ

τ = , where if 

= head losses along the pipeline length, m; ρf - fluid 
density, kg/m3. 

It means that the head losses can be recorded as the 
formula

( )
4

1
ef

f
f

i
gD

η γ
σ ρ

=
−


 			                  (36)

By replacing the velocity gradient of γ  with a 
respective expression, and the dynamic coefficient 
of effective viscosity with the expression through the 
Reynolds value, e.g.: 

8 , Re m fm

ef

v Dv
D

ρ
γ

η
= = ,

Which will result in the following dependency after 
substituting in the expression (36) 

( )
232

1 Re
m

h
vi

gDσ
=

−

Fig. 4 Layout of forces acting on the suspension 
flow.
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In the general form, the head losses can be calculated 
under the Darsy formula

2

2
m

f f
vi
gD

λ=

By comparing the expressions, we get a formula for 
hydraulic resistances in the flow of a viscoplastic 
hydraulic fluid

( )
64

1 Refλ σ
=

−
 			                           (37)

Where Re m f

r

v Dρ
η

= =critical Reynolds value for 

laminar flow conditions.

RESULTS
The resulted formula for hydraulic resistances differs 
from the known dependence for the laminar flow of 
pure liquids in that its numerator has a parameter 
characterizing the stressed condition of the hydraulic 
fluid expressed by the relation of the initial stress to 
the total shear stress (Vasylieva, 2015; Ryabinin and 
Trukhanov, 2015). 

The formula shows that as the relative stress increases, 
so does the coefficient of hydraulic resistances.

The formula (37) also shows that theoretical 
investigations and resulted dependencies do not 
contradict with known and commonly accepted 
models of suspension flow and at the same time, 
it takes into account the dependency of hydraulic 
resistances on the viscoplastic properties of the 
hydraulic fluid defined by relative shear stress 

τ
τσ 0= .

In the final form, the head losses in the flow of 
concentrated hydraulic fluids having viscoplastic 
properties are defined under the following expression

2 264 1
2 Re 1 2

m m
f f

v vi
gD gD

λ
σ

= = ⋅ ⋅
−

 			                  (38)

Where mv =average flow velocity of the hydraulic 
fluid.

DISCUSSION

When designing hydrotransport systems, the issues 
of solids concentration in a hydraulic fluid flow 
must be solved, which will result in the lowest 
possible energy consumption. The expenses for 
hydraulic transportation of solid materials are a 
complicated function of mechanical characteristics 
of solid phase and hydraulic fluid. The resulted 
method to determine head losses and the hydraulic 
resistance coefficient based on the rheology of iron 
ore suspension of tailings can be used in developing 

a system for hydraulic transportation of iron ore 
tailings.

The determinants in the formula (38) are the fluid 
viscosity and the concentration of solids that are 
defined experimentally.

CONCLUSION
The obtained methodology to determine head losses 
and the hydraulic resistance coefficient based on the 
rheology of iron ore suspension of tailings can be 
used in designing a hydraulic transport for iron ore 
tailings.

1.	 The calculation has shown that the results of 
analytical dependencies of determining head losses 
and the hydraulic resistance coefficient can be taken 
for analysis and determining the losses along the 
length of non-newton liquids.

2.	 When the solid phase concentration in iron 
ore tailings hydraulic fluid increases, we can consider 
both viscoplastic liquids with initial shear stress ( 0τ ) 
and effective dynamic viscosity (η ) according to the 
adopted Bingham-Shvedov model.

3.	 When the solid phase concentration in a 
hydraulic fluid flow increases during transportation 
of a specific volume of solids, the specific amount 
of metal in the pipeline system is reduced to the 
decreased required pipeline diameter.
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