Jr. of Industrial Pollution Control 23(2) (2007) pp. 251-259 © Enviromedia Printed in India. All rights reserved

KINETICS STUDIES ON DEGRADATION OF STARCH WASTEWATER IN AN INVERSE FLUID-IZED BED REACTOR

M. RAJASIMMAN* AND C.KARTHIKEYAN

Environmental Engineering Laboratory, Department of Technology Annamalai University, Annamalai Nagar 608 002, India

Key words : Inverse fluidized bed reactor, Kinetic Modeling, First Order model.

ABSTRACT

A three-phase inverse fluidized bed reactor was used to treat the starch industry wastewater. Experiments were carried out at different initial substrate concentrations (2250, 4475, 6730 and 8910 mg COD/L) and for various hydraulic retention time (40, 32, 24, 16 and 8h). Reactor performance shows above 90% COD removal for lower organic loading rates. The data obtained were fitted to various kinetic models, namely, First order model, Diffusional model and Singh model. From the results it was found that the First Order model fits the data well while other two fails to represent the present study.

INTRODUCTION

During the last few years, the application of fluidization in the field of biotechnology has increased considerably (Fan *et al.* 1989). The main application of fluidization principle is in the field of environmental biotechnology (Schugerl, 1989). Fluidized bed bioreactor has several advantages over other conventional reactors for the treatment of wastewater (Sokol, 2001). The inverse fluidization is a multiphase gas-liquid-solid system. The difference between ordinary fluidization and inverse fluidization lies in the density of solid particles used in the reactor. If the density of the particles used is greater than the fluid, it is ordinary fluidization; if it is less than fluid it is called as

*Corresponding auothor : raja_simms@yahoo.com & drcktech@rediffmail.com

inverse fluidization. Inverse fluidization has all the advantages of ordinary fluidization. In addition, the use of low-density particles has some advantages and overcomes the problem, which occurs during conventional fluidization. Low-density particles require low fluid velocity for their expansion and hence low power requirement. Inverse Fluidized Bed Bio Reactor IFBBR, the control of biofilm thickness is achieved within a narrow range (Karamanev, 1987). The particle-particle and particle wall collision maintains a constant biofilm thickness (Sokol, 2001).

Biological treatment processes have been successfully described by the theory of continuous cultivation of microorganisms and process kinetics have been used for the mathematical description of aerobic biological degradation (Karthikeyan, 2001). In this work, data obtained from the continuous degradation of starch wastewater in an inverse fluidized bed reactor were fitted to various biokinetic models. The model, which represents the continuous study, was identified.

The First Order Model

The first order model is given by (Pfeffer, 1974)

$$-\frac{dC_s}{dt} = -k_I C_s$$

On integration between known limits, the model can be written as

The Diffusional Model $\ln\left(\frac{C_s}{C_{so}}\right) = -k_s t$

rate should follow zero order kinetics.

i

i

t

i

Suidan et al. (1987) demonstrated that substrate utilization kinetics within biofilm can accurately be described by a model including reaction with diffusion and four different situations may occur

.....2

i) The biofilm is deep and the surface substrate concentration is very low; in this case the fermentation takes place following pseudo-first order kinetics not depending on the biofilm thickness.

ii) The biofilm is deep and the surface substrate concentration is very high and approaching that in the bulk; the fermentation rate variation with the square root of substrate concentration is typical of a diffusion-limited zero order reaction :

.....5

 $-\frac{dC_s}{dt} = k_D C_s^{0.5}$ When integrated between use thrown muss, the above equation becomes

$$\sqrt{C_s} - \sqrt{C_{so}} = -\frac{k_D}{2}t \qquad \dots \dots 6$$

The Singh Model

A modified version of the first order kinetic model was proposed by Singh et al. (1983). During degradation, the rate could vary according to the nature of the substrate under consideration, which changes both qualitatively and quantitatively as the digestion process proceeds with time. This necessitates the incorporation of time function to control the kinetic constant.

The Singh Model is given by

$$-\frac{dC_s}{k} = \frac{k_{ss}C_s}{1+\epsilon}$$
7

Integrating the above equation between the proper limits, it becomes

Experimental Methods

The starch industry wastewater obtained from the industry was characterized. Experiments were carried out in an inverse fluidized bed bioreactor with low density supporting particles. The supporting particles used in this study were made of polypropylene with a density of 870 kg/m³. It is irregular in shape with an average diameter of 10 mm and surface area of 390mm²/mm³. The wastewater was treated in an IFBBR at various initial substrate concentrations (2250, 4475, 6730 and 8910 mg COD/L) for different hydraulic retention time (40, 32, 24, 16 and 8h). Experiments were carried out at an optimum bed height of 80 cm and an airflow rate of 62.50 cc/s (Rajasimman and Karthikeyan, 2006). The pH of the wastewater was maintained at 6.0. The data obtained from the continuous degradation was used to fit the various kinetic models.

RESULTS AND DISCUSSION

The biodegradation kinetics was studied for the continuous degradation of starch wastewater at different initial substrate concentration and various

252

Fig. 1 First Order Model in continuous degradation kinetics for the initial substrate concentration of 2250 mg/L

Fig. 2 First Order Model in continuous degradation kinetics for the initial substrate concentration of 4475 mg/L

Fig. 3 First Order Model in continuous degradation kinetics for the initial substrate concentration of 6730 mg/L

hydraulic retention time. The experimental data obtained from IFBBR were fitted to the First order, Diffusional and Singh kinetic models.

The application of the first order model to the COD reduction at different initial substrate concentration was shown in Figures 1 to 4. The values of the

Fig. 4 First Order Model in continuous degradation kinetics for the initial substrate concentration of 8910 mg/L

Fig. 5 Diffusional Model in continuous degradation kinetics for the initial substrate concentration of 2250 mg/L

Fig. 6 Diffusional Model in continuous degradation kinetics for the initial substrate concentration of 4475 mg/L

kinetic parameter present in the continuous model for all initial substrate concentrations were estimated from the slope of the best-fit lines and it was given in Table 1. The values of the rate constant and higher values of R^2 (>0.90) prove the ability of this model in describing the degradation kinetics

257

Fig. 7 Diffusional Model in continuous degradation Kinetics for the initial substrate concentration of 6730 mg/L

Fi.g 8 Diffusional Model in continuous degradation kinetics for the initial substrate concentration of 8910 mg/L

Fig. 9 Singh Model in continuous degradation kinetics for the initial substrate concentration of 2250 mg/L

of starch industry wastewater in an inverse fluidized bed bioreactor. As the initial substrate concentration increases, the first order rate constant decreases and this can be ascribed to a growing importance of the recalcitrant fraction in reducing the diffusivity of biodegradable substance. In addition, high val-

Fig 10 Singh Model in continuous degradation kinetics for the initial substrate concentration of 4475 mg/L

Fig.11 Singh Model in continuous degradation kinetics for the initial substrate concentration of 6730 mg/L

Fig. 12 Singh Model in continuous degradation kinetics for the initial substrate concentration of 8910 mg/L

ues of R² obtained with the first order model makes the model more valid in representing the continuous degradation of starch wastewater.

The experimental data obtained from the inverse fluidized bed reactor were represented by the Diffusional model in Figure 5 to Figure 8. The kinetic

 Table 1

 Kinetics Constants in the First Order Model

Initial	Kinetic	Hydraulic Retention Time, h						
Concentration, mg COD/L	Constant	40	32	24	16	8		
2250	k _r , h ⁻¹ R ²	0.2378 0.9646	0.3731 0.8619	0.2993 0.8643	0.2447 0.7057	0.1962 0.6895		
4475	$k_{I'}$ h ⁻¹ R ²	0.2855 0.8638	0.2828 0.8454	0.2238 0.9427	0.2226	0.1331 0.8379		
6730	$k_{I'}$ h ⁻¹ R ²	0.2882	0.3049	0.2493	0.2232 0.9483	0.1319 0.8466		
8910	$k_{i'}$ h ⁻¹ R ²	0.1602 0.8437	0.1472 0.7391	0.1248 0.9051	0.1108 0.9374	0.0652 0.7110		

Table 2						
Kinetics Constants in the Diffusional Model						

Kinetic		Hydraulic Retention Time, h				
Constant —	40	32	24	16	8	
$k_{D'} \operatorname{mg} COD^{0.5}/$	6.5848	10.137	8.25	7.6814	6.025	
$L^{0.5}_{h}R^{2}$	0.8843 11 8354	0.0581	0.1279	-0.1501 10 1082	-3.3116	
$L^{0}.5, R^{2}$	0.2048	0.3621	0.6297	0.6986	0.6193	
$k_{\rm D} mg$ COD ^{0.5} /	15.0578	15.011	12.407	12.8118	8.6152	
$L^{0}.5_{h}R^{2}$	0.2089	0.1885	0.6507	0.7072	0.5983	
k_{D} , mg COD ^{0.5} / L ⁰ 5 R ²	17.1864 0.3453	16.387 0 1045	13.9094 0.6411	13.3996 0.8118	8.023 0.2118	
	Kinetic Constant $k_{D'}$ mg COD ^{0.5} / L ^{0.5} _h R ² $k_{D,}$ mg COD ^{0.5} / L ^{0.5} _h R ²	Kinetic Constant 40 $k_{D'}$ mg COD ^{0.5} / 6.5848 $L^0.5_h R^2$ 0.8843 $k_{D,}$ mg COD ^{0.5} / 11.8354 $L^0.5_h R^2$ 0.2048 $k_{D,}$ mg COD ^{0.5} / 15.0578 $L^0.5_h R^2$ 0.2089 $k_{D,}$ mg COD ^{0.5} / 17.1864 $L^0.5, R^2$ 0.3453	$\begin{array}{c} {\mbox{Kinetic}\\ {\mbox{Constant}} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & $	Kinetic Constant Hydraulic Retention 40 Hydraulic Retention 24 $k_{D'}$ mg COD ^{0.5} / 6.5848 10.137 8.25 $L^0.5_h R^2$ 0.8843 0.0581 0.1279 $k_{D'}$ mg COD ^{0.5} / 11.8354 12.742 10.2268 $L^0.5_h R^2$ 0.2048 0.3621 0.6297 $k_{D'}$ mg COD ^{0.5} / 15.0578 15.011 12.407 $L^0.5_h R^2$ 0.2089 0.1885 0.6507 $k_{D_{,}}$ mg COD ^{0.5} / 17.1864 16.387 13.9094 $L^0.5_L R^2$ 0.3453 0.1045 0.6411	$ \begin{array}{c} \mbox{Kinetic} & \mbox{Hydraulic Retention Time, h} \\ \mbox{Constant} & \mbox{40} & 32 & 24 & 16 \\ \mbox{$k_{\rm D'}$ mg COD $^{0.5}$/} & 6.5848 & 10.137 & 8.25 & 7.6814 \\ \mbox{$L^{0.5}$}_{\rm R}{\rm R}^2 & 0.8843 & 0.0581 & 0.1279 & -0.1501 \\ \mbox{$k_{\rm D,}$ mg COD $^{0.5}$/} & 11.8354 & 12.742 & 10.2268 & 10.1082 \\ \mbox{$L^{0.5}$}_{\rm R}{\rm R}^2 & 0.2048 & 0.3621 & 0.6297 & 0.6986 \\ \mbox{$k_{\rm D,}$ mg COD $^{0.5}$/} & 15.0578 & 15.011 & 12.407 & 12.8118 \\ \mbox{$L^{0.5}$}_{\rm R}{\rm R}^2 & 0.2089 & 0.1885 & 0.6507 & 0.7072 \\ \mbox{$k_{\rm D,}$ mg COD $^{0.5}$/} & 17.1864 & 16.387 & 13.9094 & 13.3996 \\ \mbox{$L^{0.5}$}_{\rm R}{\rm R}^2 & 0.3453 & 0.1045 & 0.6411 & 0.8118 \\ \end{array} $	

Table 3
Kinetics Constants in the Singh Model

Initial	Kinetic	Hydraulic Retention Time, h					
Concentration, mg COD/L	Constant -	40	32	24	16	8	
2250	$k_{s, h^{-1}}$	0.3475	0.4388	0.4061	0.3185	0.2113	
4475	k_{s}^{2} h ⁻¹	0.3880	0.3557	0.3219	0.6467 0.2805	0.7337 0.1595	
	R^2	0.5458	0.5329	0.4952	0.5144	0.5063	
6730	k _s h ⁻¹	0.2830	0.2664	0.2178	0.1671	0.0911	
8910	R ² k h ⁻¹	0.5494	0.6129	0.5729	0.4884	0.4564	
0710	R^2	0.5704	0.5971	0.5317	0.4977	0.5376	

rate constants and R² values obtained from graph were shown in Table 2. The biodegradation rate does not depend on diffusion phenomenon. Hence, Diffusional model failed miserably in representing the continuous biodegradation of starch wastewater in IFBBR. This fact is also complimented by the poor values of R2 obtained with the half order model.

Figures 9 to 12 shows the data obtained from IFBBR represented by the Singh model. The rate constant and R² values were obtained from the best-fit lines and it was presented in Table 3. Even though the values of rate constant decreases with increase in concentration the R² values were found to be low. Hence the Singh model fails to describe the continuous degradation of starch industry wastewater in the present study.

CONCLUSION

In the present study, three bio kinetic models namely First order, Diffusional and Singh model were applied to the data obtained from an Inverse Fluidized Bed bioreactor treating starch industry wastewater. From the results it was observed that the First order model fits the data well with high R² values, whereas the other two models fails to explain the present degradation study.

Nomenclature

C_{co} – Ir	itial su	bstrate c	oncentratio	n, mg	COD	/L
---------------	----------	-----------	-------------	-------	-----	----

- C_s Substrate concentration, mg COD/L
- t Degradation time, h
- k₁ First Order rate constant, h⁻¹
- $k_{\rm D}$ Rate constant for Diffusional model, mg COD ^{0.5}/L0.5h
- k_{sr}^{-} Rate constant for Singh Model, h^{-1}

REFERENCES

- Fan, L.S. and Tang, W.T. 1989. Hydrodynamics of a three phase fluidized bed containing low-density particles. AIChE Journal. 35 (3): 355-364.
- Karamanev, L. and Nikolov, L. 1987. Experimental study of the Inverse fluidized bed biofilm reactor. *Canadian Journal of Chemical Engineering*. 65 : 214-217.
- Karthikeyan, C. 2001. *Cassava starch wastewater treatment in batch and UASB reactors*. Ph.D Thesis, Annamalai University.
- Pfeffer, J.T. 1974. Biotechnol.Bioengg. 26: 771-776.
- Rajasimman, M. and Karthikeyan, C. 2006. Treatment of starch industry effluent in an inverse fluidized bed bioreactor. *Journal Applied Sciences and Environmental Management*. 10 (1): 39-44.
- Schugerl, K. 1989. Biofluidization : Application of the fluidization technique in Biotechnology. *Canadian Journal of Chemical Engineering*. 67 : 178-184.
- Singh, R., Jain, M.K. and Tauro, P. 1983. Water Res. 17: 349-354.

Sokol, W. 2001. Operating parameters for a gas-liquid-solid fluidized bed bioreactor with a low-density biomass support. *Biochemical Engineering Journal*. 8 : 203-212.

Suidan, M.T., Ritman, M.T. and Traegner, U.K.. 1987. Water Res. 21 : 491-498.

AQUATIC POLLUTION AND TOXICOLOGY

R.K.Trivedy

- Soil, Water Pollution and Plant Growth
- Water Quality in Korba Area A case Study
- Haematological and Histopathological Responses of Rana tigrina to a Sublethal Conc. of Heavy Metal Chromium
- Effect of Tannery Effluent on Seed Germination, Seedlinng Growth and Chloroplast Pigments Content in Mungbean
- Studies on Water quality in and Around An Industrial Complex Manali, Madras
- Evalution of Drinking Water Quality in and Around Bishop Heber College, Trichy
- Heavey Metal Conc in some Catfishes from Gopalpur Coast, East Cost of India
- Physico-Chemical Studies of Industrial Effluents from M.I.D.C. Area of Kalyan -Dombivali Influence of Jute Mill Effluents on the Physico-Chemical Characteristics of Grsthani Estuary Near Visakhapatnam
- Oxidative Metabolism in An Indian Freashwater Murrel Channa punctatus (Block) During Chronic Ammonia Stress
- Heavy Metal Accumulation in Soft Tissues and Hard Parts of *Rita rita* from the Industrially Polluted Zone of Hooghly Estuary
- Water Quality of Pamba River at Pamba, Triveni (Kerala)
- Environmental Impact Assessment of Tanning Industries Vellore District (T.N.)
- Oxygen Consumption in the Fouling Bivalve Mytilopsis sallei (Recluz) in Relation to the Toxicants Copper Citrate and Malathion - EC 50
- Acute Toxicity of the Pesticide Malathien EC 50 on the Fouling Bivalve Mytilopsis sallei (Recluze)
- * The Physico-Chemical Characteristics of Major Rivers in Pune India
- Irrigational Studies in the Major Rivers of Pune India
- Heavy Metal Study in Three Major Rivers of Pune India
- The Impact of Pollution on Biodiversity of Phytoplankton in Pune Rivers, India
- The Impact of Pollution of Biodiversity of Zooplankton in Pune Rivers India

Pages 240, Hard Bound, Price Rs. 500.00, US\$ 30.00

Order to

ENVIRO MEDIA 2nd Floor, Rohan Heights, Post Box - 90 KARAD 415110, INDIA E-mail : rktem@pn3.net.in