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INTRODUCTION 
In a neutral dynamic equation with deviating 
arguments, the highest order derivative of the 
unknown function appears with and without 
deviating arguments. These equations find numerous 
applications in natural sciences and technology.

In this paper, we study the oscillatory behaviour 
of second order   neutral dynamic equation with 
distributed deviating arguments of the form             
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(H2): :f T R R× →  is continuous function such 

that ( ), 0uf t u > for all 0u ≠  and there exists a 
positive function ( )q t  defined on  T  such that  
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(1) if 
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A non trivial solution of Equation (1) is called 
oscillatory if it is neither eventually positive nor 
eventually negative, otherwise it is called non 
oscillatory (Bohner and Peterson, 2001; Bohner and 
Peterson, 2003; Bohner and Saker, 2004; Akin, et al., 
2007).

We note that if T R=  we have ( ) ,t tσ =  ( ) 0tµ =  
then equation (1) becomes second order neutral 
differential equation
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ABSTRACT

In this paper, we establish some oscillation criteria for second order neutral dynamic 
equation with deviating arguments of the form:
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On an arbitrary time scale T. An example illustrating the main result is included. 
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If T N=  we have ( ) 1,t tσ = + ( ) 1tµ =

then equation (1) becomes
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For more papers related to neutral dynamic 
equations with distributed deviating arguments, we 
refer the reader to [8,9]. The books [1,2] gives time 
scale calculus and its applications.

MAIN RESULTS

Now we state and prove our main result.

Theorem 4.1  

Assume that ( )1H  and ( )2H  hold. In addition, assume 
that ( ) 0.r t∆ ≥  Then every solution of Equation (1) 
oscillates if the inequality 
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has no eventually positive solution.     

Proof

Let ( )y t  be a non-oscillatory solution of Equation (1).

Without loss of generality assume that ( ) 0y t >  for 
0 ,t t≥  then ( ( )) 0y tτ >

and ( )( , )) 0y tδ ξ >  for 1 0t t t≥ >  and b aξ≥ ≥ .

From Equation (1) and (H2), we have 
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and ( ( ))( )r x t∆  is an eventually decreasing function. 

Now we claim that ( ) 0r x∆ > eventually. 

If not, there exists a 2 1t t≥  such that
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Substituting the last inequality in Equation (10), we 
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which is the inequality (2).  
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As a consequence of this, we have a contradiction and 
therefore every solution of  Equation (1) oscillates.

Theorem 2

Assume that ( )1H  and ( )2H  hold. In addition, 
assume that ( ) 0r t∆ ≥  , ( . )tδ ξ  is increasing with 
respect to t  and there exists a positive right dense 
continuous, ∆  differentiable function  ( )tα  such 
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where { }( ( )) max ( ),0t tα α∆ ∆
+ =  and 

Q( ) ( ) ( ) ( )(1 ( (s,a)))s b a q s p s p δ= − − . Then every 
solution of Equation (1) is oscillatory (Higgins, 2008; 
Saker, 2010; Thandapani, et al., 2011).

Proof

Let ( )y t  be a non-oscillatory solution of (1).

Without loss of generality assume that ( ) 0y t >  for 
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Integrating from 7t  to t ,we obtain 
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which contradicts  Equation (11)

Hence the proof.

Example: Consider the following second order 
neutral dynamic equation (Candan, 2011; Candan, 
2013).
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CONCLUSION
All the conditions of  Theorem (2) are satisfied.
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Therefore (12) is oscillatory.
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