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INTRODUCTION 
In this paper, we study the oscillatory and asymptotic 
behavior of solution of fourth order nonlinear delay 
difference equation of the form 
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Here ∆ is the forward difference operator and defined 
by ∆yn=yn+1–yn where k is a fixed nonnegative integer 
and {an}, {pn} and {qn} are sequence of nonnegative 
integers with respect to the difference equation (1) 
throughout. A nontrivial solution {yn}  of equation (1) 
is said to be oscillatory if for any N ≥ nothere exists 
n > N such that yn+1yn ≤ 0. Otherwise, the solution is 
said to be non-oscillatory (Agarwal, 1992; Artzrouni, 
1985; Cheng and Patula, 1993; Peterson, 1995; Philos 
and Purnaras, 2001) We shall assume that the 
following conditions hold:

(c1) {an}, {pn} and {qn} are real sequences and an ≤ 0 for 
infinitely many values of n.

(c2) f: R→R is continuous and yf(y)>0, for all y ≠ 0.

(c3) σ (n) ≥ 0 is an integer such that lim ( )
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MAIN RESULTS

Theorem 1

In addition to the conditions

(c1), (c2), (c3), (c4), if the conditions are 
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Then every solution of equation (1) is oscillatory.

ABSTRACT

The objective of this paper is to study the oscillatory and asymptotic solutions of 
fourth order nonlinear delay difference equation of the form
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Example is given to illustrate the results.
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(1), we obtain 
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Summing the inequality (7) from n4 to n —1, we have 
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for all n ≥ n4   (8)

In view of (H2), (H3) from inequality (8), we find that 
∞ ≤ 0, as n→∞ which is a contradiction.

Case II
L=∞

In view of (H2), there exists an integer  n4 ≥ n3 and k3 
> 0 such that f(yσ(n))>k3, for all n ≥ n5

Therefore, from equation (1), we obtain 
3
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∆ , for all n ≥ n5 			    (9)

The remaining proof is similar to that of case (I), and 
hence we omitted.

Thus in both cases we obtained that {yn} is oscillatory.

In fact yn < 0, yn-m < 0 for all large n, the proof is 
similar, and hence we omitted.

This completes the proof.

Corollary 1
In addition to the conditions (c1), (c2), (c3), (c4), if the 
conditions of theorem 1 hold. Then every bounded 
solution of equation (1) is oscillatory.

Proof
Proceeding as in the proof of theorem 1 with 
assumption that is {yn} bounded non-oscillatory 
solution (1).

Therefore, from inequality (7) of theorem 1, we find 
that
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By the definition of Rn and from the inequality (10) 
we find that: 
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In view of, (H2), (H3) and (c4), we have 
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This shows that sequence {yn} is a bounded oscillatory 
solution of equation (1).

This completes the proof.

Theorem (A): 

Let an=pn≡1 and f be non-decreasing. 

Proof

Suppose that the equation (1) has non-oscillatory 
solution {yn} is eventually positive. Then there is 
a positive integer no such that yσ(n) ≥ 0, f or n ≥ no 
implies that {yn}  is non-oscillatory. Without loss of 
generality we can assume that there exists an integer 
n1 ≥ no such that 

n 1>0, y >0, 0, 0n n m n my y y for all n n− −∆ ≥ ∆ ≥ ≥ Set then 
view of (H1),

n n 1z >0, z 0, for all n=n∆ ≥ .

From equation (1) we have 
3
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In view of the conditions 

(c2), (c3), (H2) and from the equation (2), we obtain 
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We first show that 31( ) 0n
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∆ ≥∆ for n ≥ n1. 

Suppose that, there exists an integer  n2 ≥ n1 and k1 > 
0 such that 
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Summing the inequality (3) from n2 to n —1 we have
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Then there exists an integer n2 ≥ n1 and k2 >0 such that 
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Summing the inequality (5) from n3 to n —1, we have 
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In view of the condition (c4), and from the inequality 
(5), we obtain nz as n∆ →−∞ →∞ which is a 
contradiction to the fact that ∆zn ≥ 0, for all large n. 
This shows that 21( ) 0n

n

z
a
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For all large n.

Let lim .nn
L y

→∞
= Then L is finite or infinite.

Case 1
L > 0 is finite.

In view of (c2), (c3) we have 

(n)lim f(y ) = f(L) > 0
n σ→∞

This implies that 

(n)f(y ) = f(L) > 0σ , for all n

Then there exists an integer n4 ≥ n3 and from equation 
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(2) are satisfied, so equation (13) has a bounded non-
oscillatory solution that approaches a non-zero limit.
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If 
0

2 <n n nn q∞
=∑ ∞  then equation (1) has a non-

oscillatory solution that approaches a nonzero real 
number as n→∞.

ASYMPTOTIC BEHAVIOR
In this section, we obtain a sufficient condition for 
the asymptotic behavior of solutions of equation (1). 
We do not require qn > 0 here. Let  An, Bn, and Cn be 
defined by 
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Theorem 2 
Let f(u)be non-decreasing and let d>0 be a constant 
such that an ≥ d for all n ≥ no.

Suppose that

0 1 1 1 <n n n n nC A B∞
= + + +∑ + ∞

Then equation (1) has a bounded non-oscillatory 
solution that approaches a nonzero limit (Philos, 
2005; Philos, 2004; Philos, 2004; Kordonis, 2004; 
Philos and Purnaras, 2004).

Proof
Let c>0 and let N be so large that 

0 1 1 1 <
4 (2c)n n n n nC A B c

f
∞
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Let the Banach space  βN and the set Nµ β⊆ be the 
same as in theorem (A) and define the operator T: 
µ→ βN by 

n s 9(n)
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Where 

K(s, n)=Cs+1–Cn+As+1Bn–As+1B s+1.

CONCLUSION
Similar to the proof of theorem (A), we can show that 
the mapping T satisfies the hypotheses of Schauder’s 
fixed point theorem (Philos and Purnaras, 2005; 
Philos and Purnaras, 2004; Julio, 2005; Philos and 
Purnaras, 2008; Philos and Purnaras, 2010). 

Hence, T has a fixed point Yєµ, and it is clear that Y= 
{yn}is a non-oscillatory solution of equation (1) for n 
≥ Nand has the desired properties.

It should be pointed out that Theorem (A) is actually 
a special case of the above result. We conclude this 
paper with a simple example of Theorem (2).

Example:
∆(n∆3yn)+(—1)n3-nyn-m=0, n ≥ 1		                 (13)

Where m is a positive integer. All conditions Theorem 


