OSCILLATORY AND ASYMPTOTIC SOLUTIONS OF FOURTH ORDER NON-LINEAR DIFFERENCE EQUATIONS WITH DELAY

ANANTHAN V1*, KANDASAMY S2 AND VEMURI LAKSHMINARAYANA3

¹Assistant Professor, Department of Mathematics, Aarupadai Veedu Institute of Technology, Vinayaka Missions University, Paiyanoor, Kancheepuram-603104, Tamilnadu, India

²Professor, Department of Mathematics, Vinayaka Missions Kirupananda Variyar Engineering College, Vinayaka Missions University, Salem- 636308, Tamilnadu, India

³Principal, Aarupadai Veedu Institute of Technology, Vinayaka Missions University, Paiyanoor, Kancheepuram-603104, Tamilnadu, India.

(Received 17 June, 2017; accepted 22 August, 2017)

Key words: Difference equations, Asymptotic, Nonlinear, Delay

ABSTRACT

The objective of this paper is to study the oscillatory and asymptotic solutions of fourth order nonlinear delay difference equation of the form

$$\Delta \left(\frac{1}{a_n} (\Delta^3 (y_n - P_n Y_{n-k})) - qn + 1 f(y \sigma_{(n)}) = 0$$
 ---- (1)

Example is given to illustrate the results.

INTRODUCTION

In this paper, we study the oscillatory and asymptotic behavior of solution of fourth order nonlinear delay difference equation of the form

$$\Delta \left(\frac{1}{a_n} (\Delta^3 (y_n - P_n Y_{n-k})) - q_{n+1} f(y_{\sigma(n)}) = 0$$
 (1)

Here Δ is the forward difference operator and defined by $\Delta y_n = y_{n+1} - y_n$ where k is a fixed nonnegative integer and $\{a_n\}$, $\{p_n\}$ and $\{q_n\}$ are sequence of nonnegative integers with respect to the difference equation (1) throughout. A nontrivial solution $\{y_n\}$ of equation (1) is said to be oscillatory if for any $N \geq n_o$ there exists n > N such that $y_{n+1}y_n \leq 0$. Otherwise, the solution is said to be non-oscillatory (Agarwal, 1992; Artzrouni, 1985; Cheng and Patula, 1993; Peterson, 1995; Philos and Purnaras, 2001) We shall assume that the following conditions hold:

 (c_1) $\{a_n\}$, $\{p_n\}$ and $\{q_n\}$ are real sequences and $a_n \le 0$ for infinitely many values of n.

 (c_x) f: R \rightarrow R is continuous and yf(y)>0, for all y \neq 0.

 $(c_3) \sigma(n) \ge 0$ is an integer such that $\lim_{n\to\infty} \sigma(n) = \infty$

$$(c_4) R_n = \sum_{s=n}^{n-1} a_s \rightarrow \infty as n \rightarrow \infty$$

MAIN RESULTS

Theorem 1

In addition to the conditions

 (c_1) , (c_2) , (c_3) , (c_4) , if the conditions are

$$(H1) P_n \ge 0$$
 and $\sum_{s=n_o}^{\infty} p_s = \infty$

$$(H_3) \quad \inf_{(|u|\to 8)} \inf |f(u)| \ge 0$$

$$(H_3)\lim_{|u|\to\infty}\inf |f(u)| \ge 0$$

Then every solution of equation (1) is oscillatory.

Proof

Suppose that the equation (1) has non-oscillatory solution $\{y_n\}$ is eventually positive. Then there is a positive integer n_o such that $y_{o(n)} \ge 0$, f or $n \ge n_o$ implies that {y_n} is non-oscillatory. Without loss of generality we can assume that there exists an integer $n_1 \ge n_0$ such that

$$y_n > 0$$
, $\Delta y_n > 0$, $y_{n-m} \ge 0$, $\Delta y_{n-m} \ge 0$ for all $n \ge n_1$ Set then view of (H_1) ,

$$z_n > 0, \Delta z_n \ge 0$$
, for all $n=n_1$.

From equation (1) we have

$$\Delta(\frac{1}{a}\Delta^3 z_n) = q_{(n+1)}f(y_{(\sigma(n)}) \text{ for all } n \ge n_1$$
 (2)

In view of the conditions

 (c_2) , (c_3) , (H_2) and from the equation (2), we obtain $\Delta(\frac{1}{2}\Delta^3 z_n)$ is eventually non-increasing.

We first show that $\Delta(\frac{1}{a_n}\Delta^3 z_n) \ge 0$ for $n \ge n_1$. Suppose that, there exists an integer $n_2 \ge n_1$ and $k_1 > 1$ 0 such that

$$\Delta(\frac{1}{a}\Delta^3 z_n) \le -k_1 \text{ for all } n \ge n_2$$
 (3)

Summing the inequality (3) from n_2 to n-1 we have

$$\frac{1}{a_n} \Delta^3 z_n - \frac{1}{a_{n_1}} \le -k_1, (n - n_2) \text{ for all } n \ge n_2$$
 (4)

Therefore $\frac{1}{a_n} \Delta^3 z_n \to -\infty \text{ as } n \to \infty$

Then there exists an integer $n_2 \ge n_1$ and $k_2 > 0$ such that

$$\frac{1}{a_n} \Delta^3 z_n \to -\infty \text{ as } n \to \infty \tag{5}$$

Summing the inequality (5) from n_3 to n-1, we have

$$\Delta^2 z_n \le -k_2 \sum_{s=n_3}^{n-1} as, for all \ n \ge n_3$$
 (6)

In view of the condition (c₄), and from the inequality (5), we obtain $\Delta z_n \rightarrow -\infty \, as \, n \rightarrow \infty \, which$ is a contradiction to the fact that $\Delta_{_{\rm Zn}} \geq$ 0, for all large n. This shows that $\Delta(\frac{1}{a_n}\Delta^2 z_n) \ge 0$

For all large n.

Let $L = \lim y_n$. Then L is finite or infinite.

Case 1

L > 0 is finite.

In view of (c_2) , (c_2) we have

$$\lim_{n\to\infty} f(y_{\sigma(n)}) = f(L) > 0$$

This implies that

$$f(y_{\sigma(n)}) = f(L) > 0$$
, for all n

Then there exists an integer $n_4 \ge n_3$ and from equation

(1), we obtain

$$\begin{array}{ll} \Delta(\frac{1}{a}\Delta^3z_n)-\frac{1}{2}q_nf(\mathbf{L})\leq 0\,,\ \text{for all } \mathbf{n}\geq \mathbf{n}_4 \\ \text{Summing the inequality (7) from } \mathbf{n}_4 \text{ to } \mathbf{n}-1, \text{ we have} \end{array}$$

$$\Delta \left(\frac{1}{a_n} \Delta^3 z_n\right) - \Delta \left(\frac{1}{a_n} \Delta^3 z_{n_3}\right) - \frac{1}{2} \sum_{s=n}^{n-1} q_s f(L) \le 0 \text{ for all } n \ge n_4 \quad (8)$$

In view of (H_2) , (H_3) from inequality (8), we find that $\infty \le 0$, as $n \to \infty$ which is a contradiction.

Case II

 $L=\infty$

In view of (H_2) , there exists an integer $n_4 \ge n_3$ and k_3 > 0 such that $f(y_{\sigma(n)}) > k_3$, for all $n \ge n_5$

Therefore, from equation (1), we obtain

$$\Delta \left(\frac{1}{a_n} \Delta^3 z_n\right) - q_n k_3 \le 0, \text{ for all } n \ge n_5$$
 (9)

The remaining proof is similar to that of case (I), and hence we omitted.

Thus in both cases we obtained that $\{y_n\}$ is oscillatory.

In fact $y_n < 0$, $y_{n-m} < 0$ for all large n, the proof is similar, and hence we omitted.

This completes the proof.

Corollary 1

In addition to the conditions (c_1) , (c_2) , (c_3) , (c_4) , if the conditions of theorem 1 hold. Then every bounded solution of equation (1) is oscillatory.

Proof

Proceeding as in the proof of theorem 1 with assumption that is $\{y_n\}$ bounded non-oscillatory solution (1).

Therefore, from inequality (7) of theorem 1, we find that

$$R_n \Delta(\frac{1}{a_n} \Delta^3 z_n) - \frac{1}{2} R_{n+1} q_{n+1} f(L) \le 0$$
, for all $n \ge n_4$ (10)

By the definition of R_n and from the inequality (10)

$$R_n \Delta \left(\frac{1}{a_n} \Delta^3 z_n\right) - \frac{1}{2} R_{n+1} q_{n+1} f(L) \text{ for all } n \ge n_4$$
 (11)

In view of, (H_2) , (H_3) and (c_4) , we have

$$\Delta \left(\frac{1}{a_n} \Delta^3 z_n\right) \ge 0$$
 for all large n.

This shows that sequence $\{y_n\}$ is a bounded oscillatory solution of equation (1).

This completes the proof.

Theorem (A):

Let $a_n = p_n \equiv 1$ and f be non-decreasing.

If $\sum_{n=n_0}^{\infty} n^2 |q_n| < \infty$ then equation (1) has a non-oscillatory solution that approaches a nonzero real number as $n \to \infty$.

ASYMPTOTIC BEHAVIOR

In this section, we obtain a sufficient condition for the asymptotic behavior of solutions of equation (1). We do not require $q_n > 0$ here. Let $A_{n'}$, $B_{n'}$, and C_n be defined by

$$A_n = \sum_{s=0}^{n-1} \frac{1}{a_s}, B_n = \sum_{s=0}^{n-1} \frac{1}{p_s} and \sum_{s=0}^{n-1} \frac{A_s}{B_s},$$

Theorem 2

Let f(u) be non-decreasing and let d>0 be a constant such that $a_n \ge d$ for all $n \ge n$

Suppose that

$$\sum_{n=n_0}^{\infty} \left| C_{n+1} + A_{n+1} B_{n+1} \right| < \infty$$

Then equation (1) has a bounded non-oscillatory solution that approaches a nonzero limit (Philos, 2005; Philos, 2004; Philos, 2004; Kordonis, 2004; Philos and Purnaras, 2004).

Proof

Let c>0 and let N be so large that

$$\sum_{n=n_0}^{\infty} \left| C_{n+1} + A_{n+1} B_{n+1} \right| < \frac{c}{4 f(2 c)}$$

Let the Banach space β_N and the set $\mu \subseteq \beta_N$ be the same as in theorem (A) and define the operator T: $\mu \rightarrow \beta_N$ by

$$(Ty)_n = \frac{3c}{2} \sum_{s=n}^{\infty} K(s,n) (q_s f(y_{\sigma^{9(n)}}), n \ge N$$
Where

$$K(s, n) = C_{s+1} - C_n + A_{s+1} B_n - A_{s+1} B_{s+1}$$

CONCLUSION

Similar to the proof of theorem (A), we can show that the mapping T satisfies the hypotheses of Schauder's fixed point theorem (Philos and Purnaras, 2005; Philos and Purnaras, 2004; Julio, 2005; Philos and Purnaras, 2008; Philos and Purnaras, 2010).

Hence, T has a fixed point $Y \in \mu$, and it is clear that $Y = \{y_n\}$ is a non-oscillatory solution of equation (1) for $n \ge N$ and has the desired properties.

It should be pointed out that Theorem (A) is actually a special case of the above result. We conclude this paper with a simple example of Theorem (2).

Example:

$$\Delta(n\Delta^{3}y_{n}) + (-1)^{n}3^{-n}y_{n-m} = 0, n \ge 1$$
(13)

Where m is a positive integer. All conditions Theorem

(2) are satisfied, so equation (13) has a bounded non-oscillatory solution that approaches a non-zero limit.

REFERENCES

Agarwal, R.P. (1992). Difference equations and inqualities, Marcel Dekker, New York, USA.

Artzrouni, M. (1985). Generalized stable population theory. *J. Math. Biology*. 21: 363-381.

Cheng, S.S. and Patula, W.T. (1993). An existence theorem for a nonlinear difference equation. Nonlinear Anal. 20: 193-203.

Julio, G.D, Philos, C.G. and Purnaras, I.K. (2005). An asymptotic property of solutions to linear nonautonomous delay differential equations. *Electron. J. Differential Equations*. 10:1-9.

Kordonis, I.G.E., Philos, C.H.G. and Purnaras, I.K. (2004). On the behavior of solutions of linear neutral integrodifferential equations with unbounded delay. *Georgian Math. J.* 11: 337-348.

Peterson, A. (1995). Sturmian theory and oscillation of a third order linear difference equation, in: Boundary value problems for functional differential equations. *World Sci.Pub.,River Edge, Nj.* 261-267.

Philos, C.H.G. and Purnaras, I.K. (2001). Periodic first order linear neutral delay differential equations. *Appl. Math. Comput.*117: 203-222.

Philos, C.H.G., Purnaras, I.K. and Sficas, Y.G. (2005). On the behaviour of the oscillatory solutions of second order linear unstable type delay differential equations. *Proc. Edinburgh Math. Soc.* 48: 485-498.

Philos, C.H.G., Purnaras, I.K. and Sficas, Y.G. (2004). On the behavior of the oscillatory solutions of first or second order delay differential equations. *J. Math. Anal. Appl.* 291: 764-774.

Philos, C.H.G. and Purnaras, I.K. (2004). The behavior of solutions of linear Volterra difference equations with infinite delay. *Comput. Math. Appl.* 47: 1555-1563.

Philos, C.H.G. and Purnaras, I.K. (2004). Asymptotic properties, nonoscillation, and stability for scalar first order linear autonomous neutral delay differential equations. *Electron. J. Differential Equations*. 03: 1-17.

Philos, C.H.G. and Purnaras, I.K. (2005). The behavior of the solutions of periodic linear neutral delay difference equations. *J. Comput. Appl. Math.* 175: 209-230.

Philos, C.H.G. and Purnaras, I.K. (2004). An asymptotic result for some delay difference equations with continuous variable. *Advances in Difference Equations*. 1:1-10.

Philos, C.H.G. and Purnaras, I.K. (2008). Sufficient conditions for the oscillation of linear difference equations with variable delay. *J. Difference Equ. Appl.* 14: 629-644.

Philos, C.H.G. and Purnaras, I.K. (2010). An asymptotic result for second order linear non-autonomous neutral delay differential equations. *Hiroshima Math. J.* 40: 47-63.