Jr. of Industrial Pollution Control 33(S2)(2017) pp 1269-1273 www.icontrolpollution.com Review Article

STABILIZATION OF TALL BUILDING AGAINST THE WIND LOAD HARSH NAIK^{1*} AND VASUGI V²

¹M. Tech, Structural Engineering, SMBS, VIT University- Chennai Campus, Chennai- 600127, India

²Associate Professor, SMBS, VIT University- Chennai Campus, Chennai- 600127, India

(Received 17 June, 2017; accepted 22 August, 2017)

Key words: Storey displacement, Base shear, Storey drift, Gust loading factor, Wind analysis

ABSTRACT

Due to urbanization, tall building became most suitable option for offices and residential building. Where space is limited, Tall and slender buildings can be utilize. In the present study the wind analysis of G+34 floor was done by Gust Loading Factor approach according to the guideline of IS-456 (Part 3)-1987 and compare the results by analyzing the same model according the guideline of the IITK. G+34 floor building were analyze by Gust Loading Factor to identify the base shear, storey drift and storey shear by using software package ETAB's 15.0.0 version. New advancement require for the calculation of the wind load in India. In this research the comparison of wind load calculation between the old IS-456(Part 3)-1987 code and proposed draft code made, so clear idea can be suggested for the wind analysis of the high rise building in India.

INTRODUCTION

Day by day development in the vertical cities is increasing in the India as peoples are migrating from the villages to the cities for the easy life and the different purposes. For the accommodation of the more population in less space, high rise building is most suitable option. As the height of the structure increases, impact of the lateral load increases. Generally wind load governing for the structure more than the 100 m height. For the wind analysis of the tall building guideline is given in to the IS-456 (Part 3)-1987. Which majorly includes the effect of the roughness, terrain category, surrounding building, basic wind speed, soil type and importance factor in only along the wind direction. From the previous cyclone and wind data it is observed that when wind occurs, structure not only effected in along the wind direction but also in across the wind direction. Because of this reason, damage observed in so many structures although structure is well design for the wind effect according the IS-456 (Part 3)-1987.

LITERATURE REVIEW

(Chen, 1994) analyzed the response of the

structure under the random wind loading and observed the effect of wind in along the wind direction. (Yu, et al., 2012) researched about the effect of the wind on the low rise building and effect of the geometry on the wind loading. (Sygulski, 1996) checked the stability of the structure and find the effect of the damping on the wind calculation. (Chen, et al., 2011) done the wind tunnel test. So many researcher has done work for the dynamic wind analysis. (Solari, 1990) finds the effect of local wind. (Wood, 1983) modified gust factor approach. (Paginini and Piccardo, 2017) checked the gust factor approach by flow dynamic concept. (Deaves, 1993) researched about the effect expouser in the wind loading. For the coastal wind climate (Bardal and Saetran, 2016) analyzed the structure. (Kolchi, et al., 1993; Abohela, et al., 2013) analyzed the different shaped model for the wind loading.

MODELING AND ANALYSIS

For the accurate result generally Static and Dynamic analysis is done as per guideline given into the Indian standards. Static analysis can be perform as per guideline mentioned in IS-875 (Part 3)-section 5.3 and dynamic analysis is done by applying the gust factor approach as per guided in section 7. Specific criteria are mention for the condition where dynamic analysis is required. If the maximum lateral dimension to height is less than 5 and /or building natural frequency is less than 1 hz than dynamic analysis is required. For this research work G+34 building is analyzed which has 106 height. The structure has natural frequency less than one. For the study of the proposed guideline of the dynamic analysis in the IITK guideline handbook, analysis of three model is done to compare the result of storey drift. All the parameters of the three model is shown in the Table 1 (Baker and Pawlikowski, 2015; Smethrust and Green; 2012).

Table 1. Parameters of the model

Table 1. 1 arameters of the model								
Parameters	Model 1	Model 2	Model 3					
Height (m)	106	106	106					
Bottom Storey Height (m)	4	4	4					
Storey Height (m)	3	3	3					
Soil Type	Medium	Medium	Medium					
Terrain Category	3	3	3					
Apply Code	IS-875 (Part 3) 1987	IS-875 (Part 3) 1987	Proposed Draft IS-875 (Part 3)2015					
Type of Analysis	Static	Dynamic	Dynamic					
Shape	Y	Y	Y					
Thickness of Slab (mm)	125	125	125					
Beam Size								
	Material	properties						
Grade of Concrete	M25	M25	M25					
Grade of Steel	Fe 415	Fe 415	Fe 415					
	Dead load	intensities						
Floor Finish on floors (kN/m ²)	1.75	1.75	1.75					
Floor Finish on roof (kN/ m ²)	2	2	2					
Live load intensities (Kn/m ²)								
Live load on floors	3	3	3					
Live load on roof	1.5	1.5	1.5					

Y shape G+34 floor building with 106 m height is taken consider for the all three analysis. Plan view and 3D view is shown in Fig.1 and 2).

GUST LOADING FACTOR

For the dynamic analysis first of all the gust

factor is calculated according to the Indian standards and IITK guideline book. Gust factor is the ratio of the gust wind to mean wind. Gust factor acted like a dynamic factor for the static load and multiplied it with static force on the each floor. For the calculation of the Gust loading factor, guideline is given into the IS - 456 (Part 3)-1987 in section 7. In Table 2 gust loading factor in along the wind direction and across the wind direction is written for the each floor. This load factor is multiplied by area and constant and converted into the static force. The same amount of static force applied to each floor and analysis is done.

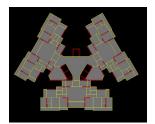


Fig. 1 Plan view of model.

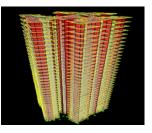


Fig. 2 3D view of model.

Force calculation

Wind load force on each floor:

F=(Cpe-Cpi)×A×Pz

Where,

Cpe=External pressure coefficient, Cpi=Internal pressure coefficient, A=Surface area of structural or cladding unit, Pz=Design wind pressure Table 3.

RESULT AND DISCUSSION

Three models analyzed using Static and Dynamic approach. For the each model, storey drift is taken as an output and compared.

a) The building of Base + 34 Floor (Static analysis as per IS-875 part -3, 1987)

b) The building of Base + 34 Floor (Gust Loading Factor analysis as per IS-875 part -3, 1987)

c) The building of Base + 34 Floor (Gust Loading factor Analysis as per Proposed Draft code and IITK guideline)

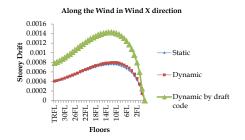
For the above three model Storey drift is been

Table 2. Gust loading factor

Floor	As Per IS 456 (Part 3)-1987		As per IITk Along the Wi		As per IITK Guideline Across the wind direction		
	Gx	Gy	Gx	Gy	Gx	Gy	
GRFL	2.0496	2.0496	2.8887	2.9763	0.0868	0.0456	
1 Floor	2.0505	2.0533	3.0118	3.0958	0.1519	0.0798	
2 Floor	2.0514	2.0542	3.1047	3.189	0.217	0.114	
3 Floor	2.0521	2.0556	3.1853	3.2733	0.2821	0.1482	
4 Floor	2.0544	2.0558	3.2561	3.3486	0.3472	0.1823	
5 Floor	2.0554	2.0584	3.3204	3.4178	0.4123	0.2165	
6 Floor	2.0585	2.0625	3.38	3.4826	0.4774	0.2507	
7 Floor	2.0618	2.0671	3.4363	3.5447	0.5425	0.2849	
8 Floor	2.0657	2.0885	3.4904	3.605	0.6075	0.3191	
9 Floor	2.0702	2.0888	3.5425	3.6641	0.6726	0.3533	
10 Floor	2.0707	2.0938	3.5931	3.722	0.7377	0.3875	
11 Floor	2.0728	2.1037	3.6426	3.7795	0.8028	0.4217	
12 Floor	2.0755	2.1072	3.6911	3.8368	0.8679	0.4558	
13 Floor	2.0755	2.1117	3.7389	3.894	0.933	0.49	
14 Floor	2.0761	2.1176	3.7859	3.9512	0.9981	0.5242	
15 Floor	2.0782	2.1291	3.8323	4.0086	1.0632	0.5584	
16 Floor	2.0811	2.1368	3.8779	4.066	1.1283	0.5926	
17 Floor	2.0833	2.1416	3.9229	4.1235	1.1934	0.6268	
18 Floor	2.0833	2.1463	3.9671	4.1811	1.2585	0.661	
19 Floor	2.0854	2.1486	4.0106	4.2388	1.3236	0.6952	
20 Floor	2.0862	2.1594	4.0531	4.2965	1.3887	0.7294	
21 Floor	2.0884	2.1681	4.0947	4.3539	1.4538	0.7635	
22 Floor	2.0885	2.1714	4.135	4.4108	1.5189	0.7977	
23 Floor	2.1255	2.1766	4.1741	4.467	1.584	0.8319	
24 Floor	2.1278	2.1801	4.2115	4.5219	1.6491	0.8661	
25 Floor	2.1343	2.185	4.2473	4.5753	1.7142	0.9003	
26 Floor	2.1366	2.2117	4.281	4.6266	1.7792	0.9345	
27 Floor	2.1366	2.2167	4.3125	4.6751	1.8443	0.9687	
28 Floor	2.1389	2.2359	4.3415	4.7203	1.9094	1.0029	
29 Floor	2.1389	2.2533	4.3679	4.7614	1.9745	1.0371	
30 Floor	2.1391	2.2646	4.3913	4.7978	2.0396	1.0712	
31 Floor	2.1414	2.2731	4.4116	4.8288	2.1047	1.1054	
32 Floor	2.1459	2.2831	4.4287	4.8538	2.1698	1.1396	
33 Floor	2.148	2.2904	4.4423	4.8723	2.2349	1.1738	
34 Floor	2.1482	2.311	4.4525	4.8841	2.3	1.208	

Table 3. Force calculation

Floor			As Per IS 456 (Part 3)-1987		As per IITK Guideline Along the Wind Direction		As per IITK Guideline Across the wind direction	
	Fx (KN)	Fy (KN)	Fx (KN)	Fy (KN)	Fx (KN)	Fy (KN)	Fx (KN)	Fy (KN)
GRFL	249.027	174.30	128.50	93.44145	181.116	130.47234	5.4417	1.9983
1 Floor	247.757	173.41	96.419	70.20812	141.623	101.78296	7.1422	2.6228
2 Floor	246.912	172.82	96.463	70.23981	145.994	104.84827	10.203	3.7469
3 Floor	244.807	171.35	108.42	78.97480	168.295	120.92339	14.903	5.473
4 Floor	242.710	169.8	120.31	87.54800	190.694	137.11931	20.332	7.4665
5 Floor	241.039	168.71	130.94	95.36039	211.546	152.24983	26.266	9.6456
6 Floor	238.875	167.20	139.38	101.5542	228.869	164.8830	32.323	11.87
7 Floor	236.887	165.80	146.67	106.932	244.464	176.31781	38.591	14.172
8 Floor	234.906	164.42	154.21	113.3767	260.568	188.17424	45.356	16.656
9 Floor	232.934	163.04	160.99	118.1207	275.488	199.22953	52.309	19.209
10 Floor	230.971	161.66	165.57	121.7367	287.299	208.0861	58.988	21.662


1272

NAIK ET AL.

11 Floor	229.015	160.29	170.34	125.7182	299.350	217.17494	65.978	24.229
12 Floor	227.068	158.93	175.24	129.3738	311.657	226.51022	73.283	26.912
13 Floor	225.130	157.57	179.98	133.1615	324.226	236.10423	80.91	29.712
14 Floor	223.199	156.22	184.84	137.0950	337.067	245.96759	88.864	32.634
15 Floor	221.277	154.88	189.90	141.4706	350.181	256.10918	97.153	35.677
16 Floor	219.364	153.54	193.78	144.6820	361.094	264.71877	105.06	38.582
17 Floor	217.458	152.20	196.97	147.2413	370.908	272.59920	112.84	41.437
18 Floor	215.561	150.88	199.98	149.8205	380.826	280.63665	120.81	44.365
19 Floor	213.123	149.17	203.22	152.2599	390.839	288.82747	128.99	47.368
20 Floor	209.608	146.71	206.37	155.329	400.936	297.16446	137.37	50.446
21 Floor	206.123	144.27	209.67	158.2880	411.100	305.63621	145.96	53.6
22 Floor	202.667	141.85	212.79	160.8784	421.313	314.22637	154.76	56.831
23 Floor	199.240	139.45	219.75	163.6349	431.553	322.91289	163.76	60.139
24 Floor	195.842	137.07	223.20	166.2959	441.794	331.66718	172.99	63.526
25 Floor	192.474	134.72	227.14	169.0930	452.007	340.45352	182.43	66.992
26 Floor	187.660	131.35	230.66	173.6214	462.161	349.22857	192.08	70.538
27 Floor	182.181	127.51	233.96	176.5088	472.222	357.94133	201.96	74.165
28 Floor	176.783	123.73	237.54	180.5595	482.155	366.53367	212.06	77.873
29 Floor	170.413	119.28	240.89	184.5328	491.922	374.94169	222.38	81.664
30 Floor	162.102	113.46	244.28	188.0546	501.487	383.09791	232.93	85.537
31 Floor	151.343	105.93	247.95	191.3862	510.816	390.93450	243.7	89.495
32 Floor	139.681	97.769	251.90	194.8825	519.875	398.38717	254.71	93.537
33 Floor	139.681	97.769	254.06	196.9937	525.445	402.94934	264.35	97.076
34 Floor	163.137	114.06	256.01	200.2763	530.644	406.9888	274.11	100.66

taken as an output and compare with each other in the graph for various condition.

In the (Fig. 3) graph clearly shows that storey drift value is higher in draft code compare to IS -875 (Part 3)-1987 and it also vary from the static analysis output. In the draft code both condition is considered, along the wind condition and across the wind condition. In (Fig. 4-6) we can clearly observe the effect of across the wind direction's component.

Fig. 3 Storey drift vs. floors graph for along the wind in wind X direction.

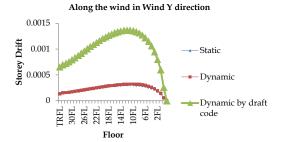


Fig. 4 Storey drift vs. floors graph for along the wind in wind Y direction.

Across the wind in Wind X

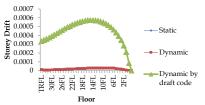
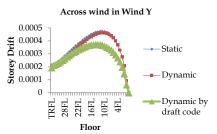



Fig. 5 Storey drift vs. floors graph for across the wind in wind X direction.

Fig. 6 Storey drift vs. floors graph for across the wind in wind Y direction.

CONCLUSION

In the present study, three type of model analyzed by ETAB 15.0.0 and storey drift of the all model checked for Gust Loading Factor and compared with each other. From this study, it is concluded that:

1. In all other cases major difference will not come between static and dynamic analysis. But if we observe the (Fig. 3 and 6). In (Fig. 3) dynamic analysis shows higher value, which indicated that for the two condition mentioned in the IS 875 (Part 3)-1987 dynamic analysis is required.

2. In the (Fig. 3-5), we can observe that storey drift value is coming higher when it is calculated by proposed draft guideline. Recent changed view of wind blowing is necessary to be implemented for the accurate analysis for keeping structure safe from the wind loading (Fig. 6).

REFERENCES

- Abohela, I., Hamza, N. and Dudek, S. (2013). Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines. *Renewable energy*. 50 : 1106-1118.
- Bardal, L.M. and Saetran, L.R. (2016). Wind gust factor in a coastal wind climate. *Energy Procedia*. 94 : 417-424.
- Baker, W.F. and Pawlikowski, J.J. (2015). Higher and higher: The evaluation of the buttress core.
- Chen, F., Li, QS., Wu, J.R. and Wu, J.Y. (2011). Wind effect on a long span beam string roof structure: Wind tunnel test, field measurement and numerical analysis. *Journal of Construction Steel Research*. 67 : 1991-1604.
- Chen, J (1994). Analysis of engineering structures response to random wind excitation. *Computers & structures*. 5(6): 687-693.
- Deaves, D.M. (1993). Analysis of gust factors for use in

assessing wind hazard. *Journal of wind Engineering and Industrial Aerodynamic.* 45 : 175-188.

- Kotchi, M., Junji, K. and Osamu, N. (1993). Windinduced response of high-rise building. *Journal of Wind Engineering and Industrial Aerodynamic*. 50 : 319-328.
- Yu, Z., Wu, H. and Zhang, P. (2012). Research on wind environment and wind load of low rise buildings based on QSMA technique and feature geometry. *Elsevier, Energy Procedia*. 16: 707-714.
- Syguilski, R. (1996). Dynamic stability of pneumatic structures in wind: Theory and experiment. *Journal of Fluid and Structures*. 10 : 945-963.
- Pagnini, L.C. and Piccardo, G. (2017). A generalized gust factor technique for evaluating the wind induced response of aero elastic structures sensitive to vortex induced vibration. *Journal of Fluid and Structures*. 70 : 181-200.
- Solari, G. (1990). A generalize definition of gust factor. *Journal of Wind Engineering and Industrial Aerodynamics*. 36: 536-548.
- Smethrust, C. and Green, B. (2012). The Buttress Core", conference paper in University of Pittsburgh Swanson School of Engineering. Conference Session C10, USA.
- Wood, C.J. (1983). A simplified calculation method for gust factors. *Journal of Wind Engineering and Industrial Aerodynamics*. 12 : 385-387.